
 1

Object-oriented Design Patterns and
System Dynamics Components

By

Dr. Warren W. Tignor, Ph.D.

Vice President, Kimmich Software Systems, Inc.
7235 Dockside Lane

Columbia, Maryland 21045 USA

Magne Myrtveit

Founder and Senior Vice President
Powersim AS, Hellandsneset, N-5936 Manger, Norway

Telephone: +47 88 02 34 34 – Facsimile: +47 56 37 35 00
E-mail: magne.myrtveit@powersim.no

Web page: http://www.powersim.no

1 Abstract
The software engineering community uses an Object-Oriented Analysis and Design (OOAD)
methodology to define, design and build software systems. The tools and trade of System
Dynamics is heavily dependent upon software to successfully model and solve problems. This
paper explores the Object-Oriented concepts of “patterns” and “classes” and how they relate to
System Dynamic “models”, “components”, “molecules”, and “archetypes”. Specific examples
will be discussed with similarities and differences as well as strengths and weaknesses and areas
of application.

In the Object-Oriented world, design patterns capture generic solutions that have developed and
evolved over time and describe them as structures or objects for reuse. These solutions are the
subject of untold redesign and re-coding as software engineers have struggled for greater reuse
and flexibility in code. Some design patterns can be used “as is” to form solutions or parts of
solutions, while others serve as generic templates that can be refined into concrete solutions.

The term component (cf. Myrtveit 2000) is used for a model “class” that can serve as a building
block when creating model “objects”. Components have interfaces defining the variables that
carry information between the components and the rest of the model. Design patterns can be used
both to implement and to document components.

2 Introduction
Expert designers, regardless of field of expertise, know not to solve every problem from first
principles, Vlissides, J., Helm, R., Johnson, R., & Gamma, E. (1995). It is beneficial to reuse
solutions that have worked in the past. When designers find a good solution, they us it over and

 2

over; this is what makes them experts, Vlissides et al., (1995). A designer familiar with patterns
can apply them to new problems without having to discover them.

Patterns have been long recognized in other disciplines as important in crafting complex systems,
Vlissides et al., (1995). Christopher Alexander and his colleagues were probably the first to
propose the idea of using a pattern language to architect buildings and cities, Vlissides et al.,
(1995). Alexander, C. et al (1977) said, “Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever doing it the same
way twice”, (page x). Alexander et al. (1977) were talking about buildings and towns; but what
he says is true of software object-oriented design, Vlissides et al., (1995).

Regarding patterns, this paper examines the relationships of software object-oriented design and
System Dynamics software model design and architectures. Forrester (1990) set the
“cornerstone” structures of System Dynamics. Bruner (1960) suggests that understanding the
structure of a subject is essential to understanding the subject. This paper will show that an
understanding of the fundamental System Dynamics structures will allow other things, Design
Patterns in the Object-Oriented sense, to be related meaningfully. For example, the tools and
trade of System Dynamics are heavily dependent upon software to successfully model and solve
problems. Since the software engineering community uses an Object-oriented Analysis and
Design (OOAD) methodology to define, design and build software systems, the same
methodology may apply to System Dynamics.

Patterns are fundamental to object-oriented design. A pattern to one person may be a primitive
building block to another. For this paper, the point of view of a pattern is as descriptions of
communicating objects and classes that are customized to solve a general design problem in a
particular context, Vlissides et al., (1995). To this end, the paper explores the object-oriented
concepts of “patterns” and “classes” and how they relate to System Dynamic “models”,
“components”, “molecules”, and “archetypes”. Specific examples will be discussed with
similarities and differences as well as strengths and weaknesses and areas of application.

3 Statement of the Problem
The paper proposes that object-oriented software design patterns are applicable to the field of
System Dynamics and the construction of software simulation models. The hypothesis is that just
as design patterns make it easier to reuse successful objected-oriented designs and architecture,
they can help the System Dynamist reuse simulation model designs and architectures.

4 Literature Review
The literature review is organized by the following categories: System Dynamics, Object-
Oriented Design, Design Patterns and Applied Systems. The first three categories are intended to
provide a basis of comparison using foundation statements about each of the disciplines (System
Dynamics, Object-Oriented Design, and Design Patterns). The Applied Systems category
represents a survey of literature using one or more of the foundation technologies (System
Dynamics, Object-Oriented Design, and Design Patterns).

 3

4.1 System Dynamics Background
Forrester set the cornerstone for the structure of System Dynamics and it has stood the test of
time. In Principles of Systems, Forrester (1990) states that structure is essential if we are to
effectively interrelate and interpret our observations in any field of knowledge: “Without an
organizing structure, knowledge is a mere collection of observations, practices, and conflicting
incidents” (p. 1-2). It is the structure of a subject that guides us in organizing information. “If one
knows a structure or pattern on which he can depend, it helps him to interpret his observations.
An observation may at first seem meaningless, but knowing that it must fit into one of a limited
number of categories helps in the identification. Structure exists in many layers or hierarchies.
Within any structure there can be substructures”, (Forrester, 1990, p. 4-1).

Likewise, Bruner (1960) tells us that it is the understanding of the structure of a subject that
allows many other things to be related meaningfully. Bruner (1960) tells us that learning through
the transfer of principles is dependent upon mastery of the structure of a subject. Understanding
the fundamentals makes a subject comprehensible. Human memory is dependent upon structured
patterns for recall. Understanding the specific case of a structure is a model for understanding
other things like it that one may encounter. The constant reexamination of material’s structure
results in a narrowing of the gap between advanced and elementary knowledge.

Forrester (1990) established the cornerstones of System Dynamic structure as the following: the
closed boundary; feedback loops; levels and rates; and, within a rate, the goal, apparent
condition, discrepancy, and action. Figure 1 presents these structure elements in hierarchical
form (Forrester, 1990, p. 4-1):

• The closed system generating behavior within a boundary
– The feedback loop

• Levels as one fundamental variable type
• Rates as the other fundamental variable type

– The goal as one component of a rate
– The apparent condition against which the goal is compared
– The discrepancy between goal and apparent condition
– The action resulting from the discrepancy.

Figure 1: System Dynamics Structure

The essential idea in a closed boundary system focuses on the interactions that produce growth,
fluctuation, and change within the system. The boundary, Figure 2, “…encompasses the smallest
number of components, within which the dynamic behavior under study is generated”,
(Forrester, 1990, p. 4-2).

 4

Pollution
Absoption Rate

Pollution
Generation Rate

Pollution

Constant Pollution Absorption Time

System Boundary

Figure 2: System Dynamics Boundary Concept

The feedback loop is the basic building block within the system boundary. The feedback loop
couples the path connecting decision, action, system level, and information about the system
level, with the final connection returning to the decision point, Figure 3.

LevelDecision

Information

Source
Action

Figure 3: System Dynamics Feedback Loop

In this context, a decision process controls system action. The decision uses the available
information to control action that influences the system level, and new information arises to
modify the decision stream (Forrester, 1990).

Interconnecting feedback loops or a single feedback loop may constitute a system. At a lower
level, feedback loops contain a substructure. Forrester (1990) tells us that there are two types of
fundamental variable elements within each loop: levels and rates.

The level variable describes the condition of the system at any particular time. The level
accumulates the results of action within the system. “The level variable accumulates the flows
described by the rate variables”, (Forrester, 1990, p.4-5).

In contrast to levels, the rate variable tells how fast the levels are changing. “The rate equations
are the policy statements that describe action in a system, that is, the rate equations state the
action output of a decision point in terms of the information inputs to that decision”, (Forrester,
1990, p. 4-6).

Lastly, there is a substructure within a rate. According to Forrester (1990), there are four
concepts within a rate equation: 1. Goal, 2. Observed condition of the system, 3. Discrepancy
between goal and observed condition and 4. Statement of how action is to be based on the
discrepancy, (p. 4-14), see Figure 4.

 5

Level

Observed ConditionGoal

Discrepancy

Rate

Action

Figure 4: System Dynamics Rate Components

Forrester (1990) clarified that computing the successive time steps in the dynamic behavior of a
system needed a standardized sequence for the computation and a terminology to use in
designating the procedure. He illustrated the computation in time steps as shown in Figure 5
below:

 DT
R20.JK

L2.J R2I.JK
L1.J R1.JK

5 5+DT 5+2DT 5+3DT 6
J K L

Time

Figure 5: System Dynamic Time Sequence
The time sequence figure assumes that the computations at time 5 were completed and the next
computation period is 5+DT. The abbreviation DT stands for “difference in time”, Forrester
(1990). “The 5 and the 6 in the figure represent the units of time used in defining the system, for
example, weeks or months, but the appropriate solution interval need not be the same as the unit
of time measurement”, (Forrester, 1990, p. 5-1).

The figure illustrated that there were four computations of system condition in each unit of time;
“K” designates the current period of time and “J” the previous period of time. The levels L1.J
and L2.J designate two values, system states, at the time “J”. The rate R1.JK flowed into level
L1. The rate R2I.JK flowed into level L2 while the rate R20.JK flowed out of level L2, Forrester,
(1990).

4.2 Object-Oriented Background
The objected-oriented paradigm captures system and software engineering work product in
frameworks of packages, classes, objects, and methods. The language of the customer is captured
by Use Cases as a statement of requirement and concept of operation. Leveraging the object-
oriented paradigm to System Dynamics models may lead to benefits such as better understood:
models, software design, and reusable software model libraries

 6

Interestingly, our colleagues in the discrete simulation and modeling world have already
recognized the opportunity to use object-oriented design and describe it with the Universal
Modeling Language (UML). Braude (1998) applied recent advances in object-oriented research
to propose a “class-level” framework for discrete simulations. Schöckle (1994) took an “object-
oriented” approach in his work with modeling systems.

Braude (1998) says that there has been relatively little sharing of code or design for discrete
simulation systems. Sharing, if any, has typically occurred at the tool level by means of
commercially available graphics-based environments for building simulations (Braude, 1998).

Based on the maturity of the object-oriented paradigm and the adoption of UML, Braude (1998)
believes that the time has arrived to attempt to design a standard framework for discrete
simulations. He cites the definition of an application framework as a reusable, “semicomplete”
application that can be specialized to produce custom applications, (Fayad & Schmidt, 1997).

Schöckle (1994) says that the object-oriented paradigm offers several possibilities not available
in the traditional procedural programming approach, which help to deal with complex systems:

1. Object-oriented building blocks are “objects” which encapsulate functions and data.
2. Procedural building blocks are “procedures” which only abstract their functions.

Additionally, the object-oriented design provides concepts for managing complexity not
available in procedural environments: classes, inheritance, polymorphism, and communication of
messages (Schöckle 1994).

4.3 Fundamental Object-Oriented Structures
Taylor (1990) identifies three keys to understanding the object-oriented paradigm, i.e., objects,
messages, and classes. According to Taylor (1990), the concept of software objects came from
the need to model real-world objects in computer simulations. For example, SIMULA, created
by O. J. Dahl and Kristen Nygaard of Norway, builds accurate working models of complex
physical systems containing thousands of objects, Taylor (1990).

An object is software that contains a collection of related procedures and data, (Taylor, 1990). In
the object-oriented approach, procedures go by a special name; they are called methods. In
keeping with traditional programming terminology, the data elements are referred to as variables
because their values can change over time, (Taylor, 1990).

Real-world objects can have an unlimited number of effects on each other, e.g., create, destroy,
lift, attach, buy, sell. The way objects interact is by sending messages to each other. “A message
is simply the name of an object followed by the name of a method the object knows how to
execute, (Taylor, 1990, p. 19)”. Taylor (1990) adds that if a method requires any additional
information in order to execute, the message includes that information as a collection of data
elements called parameters.

Since most software systems or simulations will have a plethora of objects, methods, and
variables as opposed to a single object with its methods and variables, the concept of class was
created. “A class is a template that defines the methods and variables to be included in a
particular type of object. The descriptions of the methods and variables that support them are
included only once, in the definition of the class. The objects that belong to a class, called

 7

instances of the class, contain only their particular values for the variables, (Taylor, 1990, p.
20)”.

When Grady Booch, Ivar Jacobson and James Rumbaugh began crafting the Unified Modeling
Language, they aimed to produce a standard means of expressing design that would reflect the
best practices of industry, and also demystify the process of software system modeling (Fowler
& Scott, 1997). They believed that the availability of a standard modeling language would
encourage developers to model their software systems before building them (Fowler & Scott,
1997).

Fowler says that one of the biggest challenges in software development is building the “right”
system that meets the customer’s needs at a reasonable price. To Fowler and Scott (1997),
achieving good communication with the customer, and an understanding of the customer’s world
is key to developing good software. To this end, Fowler and Scott recommend the object-
oriented Use Case, a snapshot of one aspect of a system requirement.

4.4 Design Patterns
Design patterns describe the key ideas in the system, Fowler and Scott (1997). Patterns help
explain why a design is the way it is. The design pattern represents the fundamental algorithm
being implemented by the software, an algorithm that is repeated in many other designs.
Vlissides et al., (1995) characterize design patterns as a description of communicating objects
and classes that are customized to solve a general design problem in a particular context. The
design pattern names, abstracts and identifies the key aspects of a common design structure that
makes it useful for creating a reusable object-oriented design. Design patterns describe simple
and elegant solutions to specific problems, Vlissides et al., (1995). Design patterns capture
designs that have developed and evolved over time; they reflect extensive redesign and recoding
as developers have striven for greater reuse and flexibility in their software, Vlissides et al.,
(1995).

Designing object-oriented software is considered hard work; making it reusable is even harder.
Vlissides et al., (1995) says that one has to find the pertinent objects, factor them into classes at
the right granularity, define class interfaces and inheritance hierarchies, and establish key
relationships among them. The design needs to be specific to the problem at hand but also
general enough to address future problems and requirements. Redesign is to be avoided if
possible and minimized at the least.

Vlissides et al., (1995) say that a pattern has four essential elements:

1. The Pattern Name describes a design problem, its solutions, and consequences in a word
or two. The name allows one to design at a higher level of abstraction. The vocabulary of
pattern names facilitates dialog. The name enables thinking about good designs and
communicating them and their trade-offs to others.

2. The Problem describes the criteria for when to apply the pattern. Occasionally, the
problem will include a list of conditions that must be met before it makes sense to apply
the pattern.

3. The Solution contains the elements that make up the design, their relationships,
responsibilities, and collaborations. The solution is not a particular concrete design or
implementation but a template that can be applied to many different situations.

 8

4. The Consequences are the results and trade-offs of applying the pattern. These are
important for evaluating design alternatives and understanding the costs and benefits of
applying the pattern.

The four essential elements above are part of the description of a design pattern that includes a
graphical representation and also a record of the decisions, alternatives, and trade-offs that led to
it; as well as concrete examples. Vlissides et al., (1995) advocate describing a design pattern
using a consistent format based on the following template:

1. Pattern Name and Classification – the name is a metaphor for the design and the
classification places the pattern in a taxonomy of patterns.

2. Intent – a statement of what the pattern does, rationale, issues addressed.

3. Also Known As – aliases for the pattern.

4. Motivation – a scenario of the problem and how the design pattern solves the problem.

5. Applicability – situations where the design pattern is applicable.

6. Structure – a graphical representation of the design pattern, typically Unified Modeling
Language.

7. Participants – the classes and/or objects participating in the design pattern and their
responsibilities.

8. Collaborations – how participants carry out their responsibilities.

9. Consequences – addresses how the pattern supports its objectives.

10. Implementation – pitfalls, hints, or techniques that one should be made aware of before
implementing the pattern.

11. Sample Code – software fragments that illustrate how one might implement the pattern.

12. Known Uses – examples of the pattern found in real systems.

13. Related Patterns – closely related design patterns, important differences, other patterns
that work well with the one under consideration.

4.5 Organizing Design Patterns
There are many ways to organize design patterns depending on their granularity and level of
abstraction. Vlissides et al., (1995) suggest two criteria: Purpose and Scope. Purpose reflects
what a design pattern does. Scope specifies whether the pattern pertains primarily to classes or
objects where class patterns deal with relationships between classes and their subclasses and
object patterns deal with object relationships that may be changed at run time and are more
dynamic, see Figure 6.

 9

 Purpose
 Creational Structural Behavioral

Class Factory Method Adapter Interpreter
Template Method

Scope
Object

Abstract Factory
Builder
Prototype
Singleton

Adapter
Bridge
Composite
Decorator
Façade
Flyweight
Proxy

Chain of
Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

Figure 6: Design Pattern Space (Vlissides et al., 1995, p. 10)
The design pattern space can be organized into design pattern relationships as well. Having
multiple ways of thinking about design patterns deepens ones insight into what they do, how they
compare, and when to apply them, Vlissides et al., (1995), see Figure 7.

 10

Momento

Command

Adapter Proxy

Bridge

Avoiding
hysteresis

Iterator

Builder

Composite

Decorator

Flyweight Visitor

Interpreter

Chain of Responsibility

Strategy

Mediator ObserverState

Template Method

Factory MethodPrototype

Abstract Factory

Singleton
Facade

Saving state
of iteration

Creating
composites Enumerating

children
Adding
responsibility
of objects

Sharing
composites Adding

operations
Defining
traversals

Composed
using

Defining
the chain

Defining
grammar

Adding
operations

Sharing
strategies

Sharing
states

Sharing
terminal
symbols

Complex
dependency
management

Often uses

Defining
algorithm’s
steps

Configure
factory
dynamically

Implement
using

Single
instance

Single
instance

Figure 7: Design Pattern Relationships (Vlissides et al., 1995, p. 12)

Objects can vary tremendously in size and number, representing everything from the hardware or
all the way up to entire applications. Design patterns address this as well (Vlissides et al., 1995):

1. Facade pattern describes how to represent complete subsystems as objects.

2. Flyweight pattern supports huge numbers of objects at the finest granularities.

3. Factory and Builder yield objects whose only responsibilities are creating other objects.

4. Visitor and Command yield objects whose responsibilities are to implement a request on
another object or group of objects.

 11

Objects interface with each other by specifying the operation’s name, the objects it takes as
parameters, and the operation’s return value; this is referred to as the operation’s signature. The
set of all signatures defined by an object’s operations is called the interface to the object,
Vlissides et al., (1995). The object’s interface characterizes the complete set of requests that can
be sent to the object. Objects are known through their interfaces. Without an interface, there is no
way to know anything about an object or to have it do anything without going through its
interface.

4.6 Universal Modeling Language
The Universal Modeling Language (UML) is discussed relative to object-oriented software
development. Fowler and Scott (1997) state that UML is a modeling language, not a method.
UML has no notion of process, which is a key part of a method. There are several key diagrams
within UML. For brevity, only the Class Diagram will be discussed; the set of UML diagrams
and their purpose are summarized in Figure 8 (Fowler & Scott, 1997):

Technique Purpose
Activity Diagram Shows behavior with control structure and encourages parallel

behavior.

Class Diagram Shows static structure of concepts, types and classes.

Deployment Diagram Shows physical layout of components on hardware nodes.

Interaction Diagram Shows how several objects collaborate in a single use case.

Package Diagram Shows groups of classes and dependencies among them.

State Diagram Shows how a single object behaves across many use cases.

Use Case Elicits requirements from users in meaningful chunks.

Figure 8: UML Diagrams (Fowler & Scott, 1997)
The Class Diagram is central within the object-oriented methodology. According to Fowler and
Scott (1997), a class diagram describes the types of objects in the system and the various kinds of
static relationships that exist among them:

1. Associations – for example, a customer may rent a number of videos.
2. Subtypes – a nurse is a kind of person.

Class diagrams also show object attributes and their operations as well as constraints regarding
object connectivity.

There are three perspectives that can be used with regard to Class diagrams (Fowler & Scott,
1997):

1. Conceptual – The diagram represents a concept in the domain under study. A conceptual
diagram is drawn with little regard for the software that might implement it and is
considered language independent.

2. Specification – This perspective is software based but focused on the software interfaces,
not the implementation. The emphasis is types as opposed to classes.

 12

3. Implementation – This is the software view where the design is laid bare.

Perspective is crucial to both drawing and reading class diagrams. Knowledge of the perspective
is essential to interpreting the class diagram correctly.

An example of a typical class diagram is presented in Figure 9.

EmployeeProduct

Order
dateReceived
isPrepaid
number : String
price : Money

dispatch()
close()

Order
dateReceived
isPrepaid
number : String
price : Money

dispatch()
close()

Corporate Customer
contactName
creditRating
creditLimit

remind()
billForMonth(Integer)

Corporate Customer
contactName
creditRating
creditLimit

remind()
billForMonth(Integer)

Order Line
quantity : Integer
price : Money
isSatisfied : Boolean

Order Line
quantity : Integer
price : Money
isSatisfied : Boolean

Personal Customer
creditCard#

Personal Customer
creditCard#

Customer
name
address

creditRating() : String

Customer
name
address

creditRating() : String

{if Order.customer.creditRationg
is ”poor”, then Order.isPrepaid
must be true}

1

*

* 1

*

0..1

* 1

{creditRating==”poor”}

sales
rep

line
items

Multiplicity: mandatory

Association

Navigability

Generalization Class

Multiplicity: optional

Multiplicity: many valued
Role
Name

Constraint

Attributes

Operations

Figure 9: Class Diagrams (Fowler & Scott, 1997)

The class diagram Associations represent relationships between instances of classes, (Fowler &
Scott, 1997). Associations have roles, a direction on the association. Roles can be explicitly
named with a label or the name may be implied by the target class. Generally, the class that the
role goes from is the source and the class that the role goes to is the target. A role may have
multiplicity, an indication of how many objects may participate in the given relationship.
Generally, multiplicity will indicate the range, upper and lower, for the participating objects.

From the “conceptual” perspective, associations represent conceptual relationships between
classes. For the “specification” perspective, associations represent responsibilities. For the
“implementation” perspective, association represents navigability. If navigability exists only in
one direction, the association is unidirectional (identified by an arrow). A bi-directional
association contains navigability in both directions (identified without an arrow).

Attributes are similar to associations (Fowler & Scott, 1997):

 13

Conceptual – a customer’s name attribute merely indicates that customers have names.
Specification – a class can tell its name and has some way of setting a name.
Implementation – there is a field for the customer name.

Operations are the processes that a class carries out; they are the methods on a class.

Generalizations depend on the perspective, too (Fowler & Scott, 1997):

Conceptual – everything said at one level applies to its sublevel.
Specification – the interface of the subtype must include all elements from the supertype.
Implementation – the subclass inherits all the methods and fields of the superclass.

The class diagram itself identifies constraints. However, there is no strict syntax to capture rules
as constraints in UML other than putting them inside braces ({}) and using informal English.
Design patterns are described structurally using UML. UML is a near standard way of expressing
design.

4.7 Applied Systems
Robinson and Kisner (1989) developed a prototype continuous simulation environment for
nuclear power plants applying object-oriented programming. The system was modeled by
creating a collection of objects that communicated with each other via message passing. Their
workstation environment allowed them to build simulation models by selecting iconic
representations of power plant components from a menu and connecting them with the aid of a
mouse “click”. Using LISP as the development language, they were able to modify the models
graphically at any time, including while the simulation was running, and to observe the results
immediately via real-time graphics. The use of object-oriented programming allowed them to
create a highly interactive and automated simulation environment.

At the core of their simulation package was a Class Library with classes grouped into four
categories (Robinson & Kisner, 1989):

1. Component-level objects – the basic building blocks from which the models were made.
They represented either actual components (e.g., pumps, pipes, and valves) in the nuclear
plant or abstractions such as heat sources and transport delays. These objects had
methods for computing their gross averaged physical properties, hydraulic, and/or heat
transfer characters. The methods were localized and did not describe how the objects
interacted with neighbors.

2. System-level objects – the class of system-level objects was used to define operations on
groups of related objects. However, to preserve the modularity of the object-oriented
approach, system parameters were referenced to the component-level objects. Thus,
future changes in a component-level were immediately reflected in its associated system-
level object(s).

3. Hybrid Objects – function at both the system and component levels.

4. Interface and Simulation Control – included classes to manage the simulation, manage
windows and keep a file system interface.

Robinson and Kisner (1989) said that the object-oriented approach’s advantage was most
significant relative to the concept of class, inheritance, and polymorphism. They found classes
useful for building reusable generic descriptions of similar types of objects. This was particularly

 14

powerful for them since their problem domain typically consisted of a large collection of basic
components falling into a relatively small number of categories (e.g., tanks, pipes, and valves).
These categories were conveniently described by class definitions with particular components
being created through reuse by instantiating new components and overriding the default values
of the previous component as necessary.

Inheritance was exploited by creating a class hierarchy where generic attributes of similar objects
were defined in top-level classes inherited by lower levels. The use of a class hierarchy allowed
for code to be reused and supported better maintainability (Robinson & Kisner 1989).

Polymorphism was useful since it allowed each class to define a unique response to the same
message. In a traditional program, there would have to be a priori knowledge of the type of each
component in order to determine the correct subroutine for computing a function such as
“pressure drop”. This would necessitate test clauses in the code to determine the correct
subroutine with a proliferation of subroutine names. With an object-oriented approach, the same
message was sent to all objects in the loop “compute-pressure-drop”, leaving it to the object
itself to use the correct procedure, (Robinson & Kisner 1989).

Raczynski (1990) looked at the existing software at the time and saw that much of it became
easily obsolete because it was not object-oriented, regardless of whether the simulation was
discrete, continuous or combined. To him simulation software had to be object-oriented because
the real world being simulated is made of objects. Being object-oriented meant describing the
properties of objects (e.g., behavior, interactions with other objects), and creating and handling
the objects. He included defining the structure within classes of objects through the inheritance
mechanism. Inheritance allowed extending the complexity of the model using classes of objects
created earlier.

According to Raczynski (1990), inheritance enabled programmers to create classes and therefore
objects that were specialization’s of other objects; this enabled programmers to create complex
models by reusing code created and tested before. “Thus, the user can prepare and store some
useful source ‘capsules’ and use them while creating new processes”, (Raczynski, 1990, p. 912).

Raczynski (1990) developed an object-oriented language based on PASCAL called PASION. He
compared the elements of PASION to those commonly used in simulation language at that time.
A summary of his comparison is presented in Figure 10, below (Raczynski, 1990, p. 912):

COMMON MODEL PASION PROGRAM
Components Objects

Component Specification Process declaration (object type)

Descriptive variables (including the state of the
component)

Process Attributes

Component activities and the rules of interaction Events

Experimental frames Process hierarchy and inheritance

Figure 10: Comparison of Common Model and PASION

Components were described as the elements of the simulation model (e.g., clients in a shop). The
state of each component was described by the corresponding set of descriptive variables and their

 15

activities given by the rules of interaction between the components. Experimental frames were
the actual set of descriptive variables used to determine the complexity of the model.

Basnet, et al. (1990) believed that object-oriented programming offered the potential to be a
major contributor to the continuing growth of simulation and modeling, and the construction of
models and modification of existing models. They said that the principal idea associated with
object-oriented design was that all system items (e.g., variables) are treated as “objects”, Basnet,
et al. (1990). To them an object was a class or an instance of a class, where a class was the
software module that provided a complete definition of the capabilities of members of the class.
The capabilities were provided by the procedures and data storage contained within the
immediate class definition, or inherited from other class definitions to which the class at hand
was related.

Basnet, et al. (1990) cited four key object-oriented concepts that made models more
understandable, modifiable, and reusable:

Encapsulation – an object’s data and procedures were enclosed within a tight boundary that
could not be penetrated by another object.

Messages passing – as a result of encapsulation, messages were the means of communication
from one object to affect the internal condition of another object.

Late binding – provided by object-oriented design delayed the process in which a procedure
and the data on which it operated were related until the software was actually running as
opposed to the time of code construction in traditional procedural languages.

Inheritance – provided for a low-level form of software reuse where object-oriented classes
were defined in a hierarchical tree structure.

The concepts underlying object-oriented software were extendable to simulation modeling
(Basnet, et al., 1990). They said that in terms of the simulation modeling requirements, following
the object-oriented approach preserved the bulk of the developed code for general use in model
building. Each model building exercise performed the particular functions that were of interest at
the time. The object definitions remained independent of the functions of the system being
modeled. The characteristics of the object-oriented approach allowed the rethinking of the entire
approach to systems modeling using computers, (Basnet, et al., 1990).

Basnet, et al., (1990) created an object-oriented modeling environment for manufacturing
systems, Figure 11. The distinctive attribute of their environment was the modular representation
of physical and information/decision components; they provided a set of distinctive formalisms
to support this separation. Other attributes of the modeling environment included the high-level
model specification language, the construction of a library of simulation objects, and the
provision of a graphical user interface.

 16

Graphical
User

Interface

Model
Specification

Model
Generator

Module

Simulation
Model

Library of
Simulation
Objects

Model
Specification

Language

Users

Output

Figure 11: Manufacturing Systems Modeling Environment Architecture

According to Basnet, et al., (1990), manufacturing systems were highly influenced by control
policies used in its operations. Therefore, in evaluating system performance, it was necessary to
consider the physical components as well as the policies. They said that in manufacturing
systems there was a complex hierarchical decision making structure; and the decisions were
based on available information that was often incomplete, inaccurate or delayed. So, the
decision-maker at each level of the hierarchy used heuristics, personal experience, company
rules, and policies to reach control decisions. Traditional modeling tools did not provide
convenient structures for specifying these decisions, (Basnet, et al., 1990); consequently, in
simulation modeling, the representation of controlling influences was often embedded into
elements of code modeling physical components.

Basnet, et al., (1990), cite the following reasons why a modeler would want to incorporated
explicit and separate information processing and decision making structures into their model:

1. To obtain a more realistic model of the system, and
2. To determine the effect a certain operating policy will have on the system performance.

In terms of manufacturing systems, simulation languages failed in this regard, Basnet, et al.,
(1990); they did not provide realistic constructs for modeling information flows and control
decisions. Additionally, the constructs they provided had to be hard-coded, and dispersed into the
model, creating code that was hard to modify (Basnet, et al., 1990). They suggested that a new
paradigm was needed to capture the dynamics of information processing and decision making as
well as the manufacturing physical processes.

Basnet, et al., (1990) proposed a model specification language to capture the fundamental
structure and behavior of the system elements. Their current manufacturing modeling system
required the “translation” of the physical, information and decision components into the
proposed high level language. They based their model specification language on Smalltalk.

The Smalltalk simulation objects were classified into two broad categories, (Basnet, et al., 1990):

1. Objects providing the software functions which allowed the background simulation
processing tasks to be performed (e.g., time advance, event triggering, entity creation, list
processing)

2. Objects providing the reusable building blocks for modeling manufacturing systems (e.g.,
machines, material handling vehicles, conveyors, work orders, routings).

 17

Basnet, et al., (1990) pointed out that as the capabilities of the manufacturing system model were
enhanced, the inheritance capability of the object-oriented approach created subclasses of the
generic objects that more completely modeled the behavior of specific items. The building
blocks employed a higher level of abstraction than the currently available simulation languages
of his time.

Bishak and Roberts (1991) stated that the appeal of an object-oriented approach to simulation
was attributable to the fact that the world consists of “objects”. When modeling a hospital floor,
there were lots of objects – doctors, nurses, examining rooms, medical records, x-ray machines.
Likewise, it was natural to describe things that were not physical, as objects – a database record;
the symbol y may be an object that represents a variable.

Bishak and Roberts (1991) pointed out the following areas of special potential for object-
oriented simulation:

1. Graphical representation of objects had the potential for animation of the objects when
the simulation executes.

2. Combining artificial intelligence with objects presented the opportunity to exhibit
“learning and adaptability” through encapsulation.

3. Because of encapsulation, there was the potential for the parallel execution objects and
the subsequent acceleration of the speed of the simulation.

4. Lastly, objects present the opportunity for users to build their own simulation elements;
this gave rise to the notion of simulation software engineering.

However, despite the potential power of the object-oriented approach to simulation, Bishak and
Roberts (1991) also identified some potential problem areas:

1. The object-oriented approach represented a major paradigm shift from the “usual”
procedural orientation and typically, the ability to change basic object representation
remained with the software house that created the original objects.

2. To capitalize on the object-oriented approach will require the user to become somewhat
of a language designer. In addition to the predefined objects, tools may be employed for
crafting one’s own objects.

3. The objected-oriented approach demanded that everything be represented as objects that
may be difficult to grasp (e.g., thinking of a queue as an object containing objects or a
server as an object servicing objects in a queue).

4. Related to the creation of objects by the user was the management of the objects. When
objects are destroyed some references to them must be destroyed. Similarly, when
references are destroyed so must the object be destroyed; this is sometimes referred to as
“garbage collection”, not something the typical user will want to do.

5. Lastly, they suggested that dynamic binding can be a curse as well as a benefit in that late
binding may slow execution and that this condition may be exacerbated by message
passing which is key to the object-oriented approach. They contended that late binding
placed additional responsibility on run-time software to identify the appropriate
properties (variables and functions) to be obtained.

 18

Corbin (1994) described a development technique for model conceptualization integrating
archetypes and their corresponding generic models into a framework. He stated that model
conceptualization was the most difficult stage of the modeling process and the most difficult to
master. To conceptualize a model, the following was needed, see Figure 12 (Corbin, 1994):

1. The basic feedback structure
2. The level of aggregation
3. The model boundaries, and
4. The timeframe.

The
System

The
System First Pass

Model

Second
Model

Further
Incremental
Development

Model Development
(Incremental gains in

Understanding)

Conceptualization
(The Big Leap in
Understanding)

Figure 12: Conceptualization Modeling Process

Corbin (1994) identified three generic structures, see Figure 13, for further classification of their
content:

Generic Models Structures generic to a specific problem domain.

Archetypes Structures transferable between different problem domains.

Building Blocks Sub-structures found as building blocks in many different models.

Figure 13: Three Generic Model Structures
Corbin’s (1994) conceptualization model used the “base” archetypes and generic models of those
archetypes to transition to a simple working model. The “base” archetypes, see Figure 14, were
based on the work of Wolstenholme and Corbin (1993):

 19

Intended Action
Control Growth

Opposition B/R
Fixes that Fail

R/B
Limits to Success System Reaction

Competition B/B
Fighting for Control

R/R
Success to the Successful

Figure 14: Base Archetypes
Using the base archetypes, Corbin (1994) suggested basic steps for the conceptualization process
as follow:

1. Specify the intended Behavior – Is the aim growth or control the intended behavior loop.

2. Identify the System Reaction – Will the system respond with growth or control.

3. Create the Base Archetype – Link the loops identified in 1 & 2 to create a base archetype.

4. Specify the Problem as a Generic Model – Take the simulation language specific model
corresponding to the base archetype and customize it to represent the domain problem

5. Qualitative First Pass Model – Flesh out the loops with intermediate variables and
organizational boundaries

6. Quantitative First Pass Model – Add extra detail to the model to keep it consistent with
the qualitative model

7. Iterative model development – Develop the model from here on based on iterative
simulation results.

One caution offered by Corbin (1994) when using this methodology based on archetypes was to
strike a balance between the initial structure from the archetype and the danger of using an
overly prescriptive structure that constricted the developers thinking about the problem, i.e.,
forcing the problem to fit the solution. In fact, Corbin (1994) felt that building the proposed
framework around the full set of system archetypes would be too restrictive with the archetype
not only being the starting point but also the ending point!

La Roche (1994) identified the concept of a template for the structure of a system dynamics
model realized in the MicroWorld® software of DYNAMO PD+®. The Template Simulator was
organized into four segments (La Roche, 1994):

1. MicroWorld
2. Infosystem
3. Controls
4. Coupling of process-chain and accounting.

The “Template-loops”, La Roche (1994), comprised a very simplified structure of a business
with subsystems that defined its behavior and profit:

1. A supplier with his own planning
2. A production process-chain
3. A production and supply control system
4. A sales operation trying to match backlog and market-driven delivery delay allowed.

 20

La Roche (1994) discussed the concept of using scenarios for business-process-engineering as
general tasks to maximize asset-turnover and net product contribution, depending on the type of
demand variation the business was subject to. He identified fundamental types of process-chain
control with application to the basic model (La Roche, 1994) as illustrated in Figure 15:

Stock

Start Stop

Input

Push-Chain

Stock

Start Stop

Input

Pull-Chain

Stock

Start Stop

Input

Capacity-Chain

Stock

Start Stop

Input 2 Input

Leadtime

Backterminated-Chain

Figure 15: Process-chain control structures
La Roche (1994) said that using a template model at the start of the modeling process built on the
essence of broad experience in the field. Templates lent themselves to an interactive and
repetitive model building process (La Roche, 1994). Model building started with a provisional
problem exposure of the people concerned with business process engineering using the template
model and adjusting its parameters to fit the case at hand:

1. Expanding the template model structure towards the actual business process-chains.

2. Putting the pre-tested subsystems together as an updated version of the customized
business-model.

 21

La Roche (1994) believed that a continuous top-down model of the business-process-chain
would be a useful and versatile tool to get the grand picture of the really worthwhile
improvement of the process.

Joines and Roberts (1994) prepared a tutorial showing how to design object-oriented simulation
models using the C++ language. The conceptual design of the object-oriented context for
simulation is illustrated in Figure 16 (Joines and Roberts, 1994):

Simulation Models

Simulation Modeling Package

Simulation Classes

Foundation Classes

C++

highest level

lowest level
Figure 16: Context Design for Object-Oriented Simulations

To Joines and Roberts (1994) “users” could relate to the design at any level. If only interested in
results, the user related at the model execution level. Or, if only interested in the algorithm
construction level, they related at the C++ level. Because of the object-oriented design, the
concepts at each level were “encapsulated” so users need not be concerned with the concepts at
the lower level. But, the sophisticated user had access to the lowest possible level.

The class concept is fundamental to object-oriented software according to Joines and Roberts
(1994); the class provides a “pattern” for creating objects and defines the “type”. An example of
an Exponential class follows (Joines & Roberts, 1994), see Figure 17:
#include “random.h”
/* “expon.h” contains the class Exponential. This class describes an

inverse transformation generator for Exponential variables. */

class Exponential : public Random {
public:
 Exponential(double, unsigned int=0, long=0);
 Exponential(int, unsigned int=0, long=0);
 virtual double sample()
 void setMu(double initMu) { mu = initMu; }
 double getMu() { return mu; }
private:
 couble mu;
};

Figure 17: Class definition of object’s Properties

 22

Joines and Roberts (1994) explained that the properties of classes, data objects and functions,
were grouped into “public” and “private” sections of the C++ software. Public properties were
accessible from outside the object. Private properties were accessible only from within the object
and were locked-out to the public. Making a property private restricted unauthorized use and
encapsulated the object’s properties. The Exponential class inherited from the Random class and
had access to all the public properties of the Random class without having to re-code them. There
were two constructors in the Exponential class; one takes a “double” and the other takes an
“integer”. Likewise, a destructor, not used in Exponential class, will cleanup any object
responsibilities. The sample() function was specified as a virtual function in Exponential because
the type of variable was not known a priori. The program decided at run-time which random
variable to sample; “run-time” binding; this makes the entire specification of sampling from
variables much simpler. As an illustration of polymorphism, the Exponential class had two
constructors so users may specify either floating point or integer arguments for the mean
interarrival time. Polymorphism allowed the same properties to be applied to different objects,
i.e., integer or double. Under other circumstances, polymorphism will allow users to produce the
same behavior with different objects.

Myrtveit and Vavik (1994) investigated modeling as a way of learning, and learning from
running simulations. They found that to meet new requirements for learning environments that
concrete objects were needed in addition to the general and abstract objects of accumulator-flow
diagrams. Myrtveit and Vavik (1994) found that the use of objects was an elegant way to break
the “world” into smaller parts that were easier to handle. To them, classification of objects was
significant. Objects with the same properties (attributes) and operations were grouped into a
class, Myrtveit and Vavik (1994). An attribute or operation local to a class was hidden
(encapsulated) inside the class.

Myrtveit and Vavik (1994) thought that only in rare circumstances would an accumulator-flow
diagram represent a natural object mapping a system. To them accumulator-flow diagrams
focused on object attributes, and relationships between attributes. This focus was natural since
the main purpose of accumulator-flow diagrams was to describe the dynamic relationships
between attributes of a system and deduce the resulting behavior over time. To Myrtveit and
Vavik (1994), providing higher level objects may be a way to make modeling useful to non-
modelers.

Senge (1994) discussed seeing patterns of structure recurring again and again; he referred to
these structures as archetypes and acknowledged that they recur in many different areas of
knowledge: biology, psychology, economics, political science, management and ecology. To
Senge, archetypes provided hope that specialization and fractionalization of knowledge would be
bridged. Archetypes, per Senge (1994), were made of system building blocks: reinforcing
processes, balancing processes, and delays. The structure of a frequently recurring archetype is
illustrated in Figure 18, Limits to Growth, (Senge, 1994, p. 97).

 23

Growing Action Condition Slowing Action

Limiting Condition

+ -

Figure 18: Limits to Growth Archetype

With the Limits to Growth archetype, a reinforcing (amplifying) process is set in motion to
produce a desired result. A spiral of successes resulted; but they also created inadvertent
secondary effects that eventually slowed down the success rate. According to Senge (1994, p.
95), the management principle of the Limits to Growth archetype is as follows: “Don’t push
growth; remove the factors limiting growth”. Senge (1994) says that there is approximately a
dozen system archetypes that affect us.

Goldgar and Acosta (1995) raised the perspective for object-oriented design from the software
level to the system level for systems engineering of large, complex systems. They said that in
1995 systems were created that were two or three orders of magnitude greater in complexity than
those of only five or eight years earlier were. They claimed that the more complex systems were
developed with the same tools and methodologies of the early period. They claimed that the
emergence of object-oriented analysis methods integrated several standard system engineering
modeling paradigms, e.g., entity-relationship models, state transition models, and process or
functional models.

The particular short fall of interest to Goldgar and Acosta (1995) with system engineering
models regarded provisions for system performance modeling, e.g., shared resource contention,
queuing, resource utilization, and response time. They took advantage of logical system
definition facilities of object-oriented analysis methods based on Shlaer-Mellor. They concluded
that by taking advantage of powerful object-oriented and performance modeling abstractions, a
foundation was provided for a system engineering discipline that encouraged functional
definition, performance evaluation, and system partitioning early in the system lifecycle. To
Goldgar and Acosta (1995), a comprehensive analysis of system requirements and design
reduced the risk, cost, and time involved in constructing and deploying complex computer-based
systems.

Eberlein and Hines (1996) published their first iteration of “molecules” that described
fundamental System Dynamic capabilities. The molecules included the following:

 24

1. Name
2. Parents
3. Used by
4. Category
5. Problem Solved
6. Equations
7. Description
8. Behavior
9. Classic Examples
10. Caveats
11. Technical Notes.

An example of a “molecule” is provided in Figure 19 below.

Name: Level (also known as
“stock”, “state”, or
“integration”)
Parents: None

Increasing Quantity

Level

Decreasing Quantity

Used by: Present value, Cascaded level, Goal-gap or smooth, Level protected by level,
Work accomplishment structure
Category: Fundamental structures
Problems solved: How to change incrementally, how to accumulate or de-accumulate,
how to remember, how to remove simultaneity from a feedback look (see technical
notes).

Figure 19: Molecule Illustration of a Level
Ahmed (1997) pointed out that traditional system dynamic software allowed users to build
models from abstract primitives. He felt that this process was slow and required deep skills in
both the discipline of modeling and the domain of the subject model. These two items, he
claimed, were impediments to potential users and proposed a methodological process based on
components that brought those with problem domain knowledge closer to the modeling domain
without prerequisites of deep knowledge of the modeling process.

According at Ahmed (1997), component design was not new to software engineering; and with
the increasing focus on object-oriented design, there was a great potential for reuse of parts or
whole existing models. To this Ahmed (1997) focused on the specification of the requirements
for component specification and design.

His work differentiated components from generic structures and molecules. Ahmed (1997)
declared that a component was built from a collection of variables and a number of components
could be configured into a model. To Ahmed (1997), components had two main features:

1. Specification, and
2. Implementation.

To Ahmed (1997), there were clear benefits to be derived from the use of components:

1. Enabling business professionals or engineers not trained as modelers to build models.

2. Shortening the development time and lowering the cost of producing models.

3. Allowing modelers to leverage each others components in their own works, and

 25

4. Enabling model developers to concentrate on specific features of their models due to the
availability of third party components.

To this end, Ahmed (1997) advocated a component catalog architecture, Figure 20.

 26

Promotion phylum (A
general Promotion Model)

OUTPUT: Awareness,
Reputation

Product Development
phylum (A Product
Model)

Functionality Spending

OUTPUT: Product
Quality

Functionality Spending

OUTPUT: Product
Quality

Pricing phylum (A general
Pricing Model)

Demand-oriented Pricing

OUTPUT: Affordability

Demand-oriented Pricing

OUTPUT: Affordability

Directory Entry Catalog Node

Manuf acturing Distribution Marketing Management Serv ices Publishing

Binary Tree Search

1st level: Marketing
catalog Node

Product Range StrategyPricing StrategyPromotion Strategy Place Strategy

Sub-Directory Entry

Catalogs Catalogs Catalogs
CatalogsCatalogs

2nd level: Product
Range catalog Node

Product Planning Product PositioningProduct Portf olio

Sub-Directory Entry

Catalogs Catalogs
3rd level: Product

Planning catalog NodeSub-Directory Entry

Market Penetration Market Dev elopment Product Dev elopment Div ersif ication
Phy lum

Directory
Entry

CatalogsCatalogsCatalogs

Binary Tree Search

Catalogs

Component
Directory :

Binary Tree
Search

Cost-oriented Price Component Par Value Par Dim Equa/Expr

Component
Def inition

Cost-oriented Pricing

OUTPUT: Affordability
Break-even analysis

OUTPUT: Affordability
Contribution Pricing

OUTPUT: AffordabilitySkimming the market

OUTPUT: Affordability

Durability Spending

OUTPUT: Product
Quality

ComfortabilitySpending

OUTPUT: Product
Quality

Safety Spending

OUTPUT: Product
Quality

Reliability Spending

OUTPUT: Product
Quality

Advertising Spending

OUTPUT: AwarenessImage building Spending

OUTPUT: Awareness,
Reputation

Branding Spending

OUTPUT: Awareness,
Reputation

Binary Tree Search

Binary Tree Search

Legend

Directory

Catalog Node

Search

Selection

Binary Tree Search

Figure 20: Component Catalog Architecture

 27

Essentially, Ahmed (1997) said that modeling tools needed to be made available to practical
business people, politicians and other professionals so that they could have an opportunity to
learn to control unintuitive dynamic processes.

Kovács, Kopácsi, and Kmecs (1997) noted that software developers often experience the
problem of creating components for an application that someone has produced previously.
Without effective reuse tools, it is natural to create components from scratch than look for useful
components in other programs or systems. In the field of flexible manufacturing systems and
flexible manufacturing cells, this is often the case. Even though the components of flexible
manufacturing systems and cells are the same types of machine tools, robots, and transfer
equipment, the components are recreated rather than reused. Typically, they will differ from each
other only in their amounts and working parameters, Kovács et al., (1997).

Kovács et al., (1997) investigated the design methodology based on the object-oriented Rational
Rose CASE tool. They concentrated not only on the software reuse but the documents created
during the conception, design, implementation, and testing phases.

They found that components can be analyzed and defined using these tools and reuse achieved.
The reuse and application of the objet-oriented design techniques helped them to build different
flexible manufacturing systems simulation models easier, faster and more reliably, Kovács et al.,
(1997).

Kortright (1997) used the UML as a modeling and simulation language with Java as the
implementation language. Based on the Model-View-Controller design pattern, he added
different views to the models for statistics collection, animation, and checkpoint recording. The
Model-View-Controller design pattern significantly facilitated simulation model building by
disassociating a model from event handling, statistics gather, and other observable functions,
Kortright (1997).

He found that he could use the same simulation model for sequential and parallel discrete-event
simulations simply by exchanging controllers, without changing the model itself, Kortright
(1997). Similarly, an arbitrary set of views was added to the model.

Kortright (1997) investigated UML, a third generation object-oriented modeling language, to
represent simulation models. In UML, models were described through a rich set of diagrams,
Kortright (1997):

1) Class Diagrams described various object classes and their relationships and associations,
including inheritance and aggregation.

2) Use-case diagrams described the intended use of the model system.

3) Interaction Diagrams showed the timing and sequencing characteristics of the system.
There were two types of diagrams used here:

a) The Sequence Diagram described message passing as time flows in a system and
included annotations for specific timing requirements.

b) The Collaboration Diagram showed message passing without reference to a time axis,
allowing for the description of a scenario while keeping clear the structure of the
system.

 28

4) State Diagrams allowed for guards on transitions, propagated transitions, actions on
transitions, actions on state entry, and more. The diagrams accounted for both concurrent
and hierarchical state diagrams.

5) The Component Diagram mapped the model to a set of implementation components.

6) The Deployment Diagram described the binding of software components to physical
devices.

Kortright (1997) found UML comprehensive and under consideration to become an official
standard in software engineering. He felt that there was a great deal to gain by using UML for
simulation modeling. To him an important problem was that simulation models were described
in a large variety of notations, or directly in a programming language. UML “provided a set of
proven notations for model description and permitted the visualization of a number of alternative
designs within an integrated framework”, (Kortright, 1997, p. 44).

The Model-View-Controller design pattern, Figure 21, kept the underlying model separate and
independent of event handling and viewing mechanisms, Kortright (1997). Mechanisms
developed without using the design pattern mixed the simulation model with viewing and event-
handling functions, making it more difficult to modify or extend the model (Kortright, 1997).

Controller Model Viewhandles observes

Figure 21: Model-View-Controller Design Pattern

Kortright (1997) found a close correspondence between Java and UML and observed the
following:

1) UML classes map to Java classes.

2) UML operations map to Java methods.

3) UML interfaces map to Java interfaces.

4) UML inheritance relates to Java implementation through the “extends” and “implements”
relationships.

Typically, UML constructs corresponded to an equivalent Java construct. Therefore, Kortright
(1997) observed that Java could implement large-scale, multithreaded, distributed systems that
UML described.

Savino-Vázquez and Puigjaner (1999) used UML to specify the structural components of
queuing network performance models. They started with the problem of representing large-scale
systems with multiple components in a simulation model in order to facilitate reuse, maintenance
and testing.

Robinson and Whisenhunt (1999) applied an object-oriented approach to model a PowerPC with
the POWERSIM language. MOOSE (Motorola Object-Oriented Simulation Environment) provided
a distributed object-oriented simulation kernel. Each object in the simulation corresponded to a
specific hardware component with practically a one-to-one correspondence between simulation
objects and distinct hardware components. The simulation objects were configurable to model a
series of computers from reuse of basic subsets of software “parts”, i.e., objects, Robinson and

 29

Whisenhunt (1999). The design of MOOSE emphasized encapsulation of models and ease of
use.

Myrtveit (2000) defines object-oriented extensions to the basic SD language of levels and flows.
Basic SD has only built-in classes, called levels and auxiliaries. Myrtveit introduces user-defined
classes, called components. The SD counterpart of an object is a variable. The submodel variable
type is introduced to create hierarchical SD models, and to instantiate components. Links and
flows are the SD counterparts of object relationships. Myrtveit extends this to wire connections,
where parameters are bundled together into type-safe connections between variables.

5 Brief Description of the Research Method and
Design
The research method compared the object-oriented criteria as defined by Taylor (1990), design
patterns by Vlissides (1995), and the UML by Fowler and Scott (1997) to the literature research
results. The literature research articles were examined for use of and reference to use of object-
oriented design, design patterns and UML.

6 Data Analysis
Review of the literature resulted in clusters of articles around the following categories:

1) Structure and Design Patterns
2) Object-oriented Design
3) Unified Modeling Language.

The articles that occupy these categories dated from 1989 to the present with the exception of the
UML category. Articles that discussed simulation and modeling using UML were very recent
and few in numbers, only three articles found, Figure 22.

 30

Author(s)
Structure,

Design Patterns Object-oriented

Unified
Modeling
Language

Robinson and Kisner (1989) ·
Raczynski (1990) · ·
Basnet, et al. (1990) ·
Bishak and Roberts (1991) · ·
Corbin (1994) ·
La Roche (1994) ·
Joines and Roberts (1994) · ·
Myrtveit and Vavik (1994) · ·
Senge (1994) ·
Goldgar and Acosta (1995) ·
Eberlein and Hines (1996) ·
Ahmed (1997) · ·
Kovács, Kopácsi, and Kmecs (1997) · · ·
Kortright (1997) · · ·
Savino-Vázquez and Puigjaner (1999) · ·
Robinson and Whisenhunt (1999) ·
Myrtveit (2000) · ·

Figure 22: Summarizing Articles Researched and Categorization
Analysis showed that simulation modelers prolifically generated terminology to describe their
craft. To focus the paper, the term component (s. Myrtveit 2000) was used for a model “class”
that can serve as a building block when creating model “objects”. Components have interfaces
defining the variables that carry information between the components and the rest of the model.
Design patterns can be used both to implement and to document components.

Analysis of the literature survey terminology is essential to understanding object-oriented design
patterns and system dynamic components. A brief discussion of terminology follows:

1) A System Dynamics model consists of variables.

2) Basic System Dynamics uses basic variables, which are state variables and non-state
variables. There are many synonyms for the basic variable types. State variables are
called stocks, levels, accumulators, and reservoirs. Non-state variables are called
auxiliaries, converters, and constants.

3) Extended System Dynamics (Myrtveit 2000) allows variables to contain other variables
to an arbitrary level of nesting. All the variables of a model reside within one top-level
variable, called the model variable. A component is defined as a model and its
visualizations (diagrams). Components can be used as submodels of other components.
Components correspond to classes. Submodels correspond to objects.

4) Some variable types, e.g., queue can to some extent be consider built-in structured
variables. These components are not user-defined, and cannot be modified or inspected
(black box).

 31

5) Structured variables (Myrtveit 2000) have a type. The type determines possible
connections between variables. A socket can be connected to a plug of the same type, and
components of the same type can be freely exchanged. This mechanism opens up for
polymorphism.

6) Polymorphism implies that one component can be exchanged for another component
without the need for the using component to know. As an example, if a component S of
type Supplier is connected to another component P, then S can be replaced by any other
component of type Supplier, with no need to change the connected component P.

7) A design pattern (in System Dynamics) is a network of (structured) variables, connected
together to solve a specific problem.

8) A molecule can be considered a design pattern that uses only basic variables. Molecules
do not support polymorphism, since basic variables do not have complete interface
definitions (The user has to fulfill the connection by manual editing of equations. An
exception is flows connected to levels.). Molecules are runnable models, but they are not
classes, as they do not implement types. This means that molecules cannot be reused
except through copying and editing.

9) A class (in System Dynamics) is a component (model) that is equipped with a type
(interface). The type is identified by a type name. The interface contains parameter
variables for import and export of information with a model of that type.

10) Archetypes are ”template” influence diagrams used to describe the feedback loops
involved in explaining a common problem situation. Feedback loops are best described
using basic variables only, and in the form of Causal Loop Diagrams. Archetypes are not
runnable, in the sense that they do not specify the equations involved in the relationships
between the variables.

A summary of the terminology is presented in Figure 23 below.

 Building block Type Composed from Instantiable Runnable
Level
Non-level
Oven
Conveyor
Queue

fixed nothing yes no1

Molecule no basic variables no2 yes

O
bj

ec
t

Submodel user-defined variables yes yes
Archetype no abstract variables2 no no
Molecule no basic variables no yes

Pa
tt

er
n

Component user-defined variables yes yes
1 User must edit equation to complete definition.
2 User can copy and paste molecules, but they must be edited in order to connect to the rest of the model.
(Molecules do not have interfaces for connecting them up.)
3 An archetype does not even determine if a variable has a state (level) or not (non-level.

Figure 23: Summary of Terminology
Data analysis showed that “structure” is essential to simulation system design: Bruner (1960),
Forrester (1990), Alexander et al., (1977), and Vlissides (1995). Within structure, the content of

 32

simulation system design may be expressed in several ways from domain to problem specific
software code. Analysis of the content of an object-oriented design as specified by Taylor (1990)
revealed that continuous, System Dynamics, models fell short in the “messages” category;
otherwise, the major criteria for object-oriented design applied, see Figure 24.

System Dynamics Object-Oriented
Bounded (interfaces) Bounded (interfaces)
(not identified in literature) Messages
Variables Objects
Levels and Rates (built-in, generic)
Ovens, Queues, etc. (built-in, special)
Components (user-defined)

Classes

Components
Generic Structures
Molecules (models)
Archetypes

Patterns

Figure 24: Alignment Analysis of System Dynamics and Object-Oriented Structures
Design patterns captured the fundamental design structures and cataloged them for reuse as the
basis of new simulations or the generation of additional design patterns. There was a general
alignment between software engineering design patterns and system dynamic design patterns,
with the exception of “messages”. Design patterns are essential to simulation model reuse.

The UML standard defines nine different kinds of diagrams, some with its own subtypes. The
diagrams can be grouped static and dynamic views of systems (or models). The table below is an
attempt to summarize how the various UML diagrams relate to system dynamics modeling.

 33

Class Diagrams
decay

material decay

uses

Basic SD has only built-in classes. Therefore, from a class point of view, all basic SD
models look the same. Class Diagrams, can be used, however to describe the
architecture of component catalogs that contain user-defined SD classes and their
interfaces. As an example, the diagram in Figure 20: Component Catalog Architecture
can be mapped to an UML class diagram. The benefit of UML is that it is a standard
for describing classes and relationships from high-level designs to low-level of detail.

Object Diagrams

inv:level

ship:aux

prod:aux

Any SD model can be mapped to an UML object diagram. SD variables correspond to
OO objects, and variable dependencies correspond to UML dependencies (dotted line
with arrow).

SD uses many different kinds of object diagrams, with vendor and author specific
variations. The accumulator-flow diagrams of SD have symbols for variables and links
and flows for relationships. The class of the variable is captured by the shape of the
variable symbol (rectangular, circular, etc.) and the nature of the relationship by the
look of the link (double line, single line, dotted line, etc.). This makes AFD a very
compact object representation of an SD model.

A SD causal-loop diagram is a simpler SD object diagram type. Here all variables are
represented using one symbol (the variable name). Variable type (class) is omitted
from the CLD view of a model. Object relationships are visualized using arrows. The
polarity marks (+/- or s/o) that are used on links, match in a vague way to UML
named dependencies.

The diagram type used by Senge (1994) to represent archetypes is a simplification of
CLD, in that link polarities are not shown. Again, there is a close map to UML object
diagrams.

St
ru

ct
ur

al
 D

ia
gr

am
s

Component Diagrams

Component diagrams can be used to describe the organization of model libraries,
contents, interfaces and relationships between libraries. Along with the emerging OO
extensions to SD, this diagram type can be a useful way to document large projects
and re-usable component catalogs.

Use Case Diagrams

This diagram type groups objects into actors, use cases and various kinds of
relationships among them. The diagram type can be used to describe how various parts
of a system interact. A use case diagram, as an example, shows how a set of
components for modeling a market place for products and services can be put together
to model a given scenario (e.g., two competitors, one product, two market segments).

Interaction Diagrams

This diagram category is subdivided into Sequence Diagrams and Collaboration
Diagrams. Forrester’s (1990) illustration in Figure 5: System Dynamic Time Sequence
is a kind of tabular sequence diagram. The interaction diagrams defined by UML can
be used to describe the steps that take place during a simulation process.

Statechart Diagrams
idle

transmitting

senddone

Such diagrams are best used for displaying how objects can enter and leave states in
response to certain events. In continuous models, state transitions are often modeled
using flows, and the states are represented as levels (counting the objects in each
state). B

eh
av

io
ra

l D
ia

gr
am

s

Activity Diagrams
develop

produce

This UML diagram type is used to model workflow and operations. The SD
counterpart is the chain of flows between levels in an accumulator-flow diagram.

Figure 25: Relating UML to System Dynamics

Annotations can be used to include comments into any UML diagram. This is a standard feature
that can be considered also for SD diagramming languages.

 34

7 Major Findings and Their Significance
The major findings of this research and their significance is presented as follows:

1. Object-oriented analysis and design provides a bridge between the software engineering and
simulation and modeling community based on fact that simulation models are made of
software. Both discrete and continuous simulation modelers, as well as software engineers
strive to produce software i.e., models and applications, efficiently with as much reuse as
possible. This means that modelers and software engineering have a lot of common
knowledge to share and leverage in their respective disciplines, although the weight of the
benefit appears to be for the modeler.

2. Design patterns as components support model reuse and may act as a basis for the design and
development of many new models. This is significant from a reuse perspective. For new
modelers or the uninitiated in modeling, seeing current models relevant to their own
problems may enhance interest and commitment to the modeling process.

3. Terminology is prolific with many overlaps between the object-oriented and modeling
communities. Note that molecule and component can be considered as objects and as
patterns. In the object view, the building block is used together with other building blocks to
create a model. Here instantiation is important. In the pattern view, the building block defines
a network of objects that are connected up to serve a given purpose (solve a given problem).
The difference here is that the problem is solved through interacting objects, rather than by
one single object. Without a better understanding of the terminology and the convergence to
a common understanding, the ability to leverage the knowledge of each community will be
lost. UML offers an opportunity to share a common language to describe models.

4. The foundations of System Dynamics align well with the object-oriented paradigm with the
exception of “messages”. However, with the notion of the time-step and the variables that it
effects, the concept of message exists in System Dynamics; this is an important concept to
complete the relationship between System Dynamics and Object-Oriented foundations.

5. Discrete simulation is ahead of the System Dynamics community in applying and
experimenting with object-oriented design concepts. This is significant in that their reaction
to using object-oriented design and experimenting with it appears positive. System Dynamics
can learn from their experiences.

6. UML has just begun to be used to describe simulation models. This offers System Dynamics
an opportunity to start at the beginning of a potentially significant movement towards a
common software engineering design language with the potential to generate simulation code
in multiple languages from C++, JAVA, to someday, VENSIM, POWERSIM and others.

7. In object-oriented design, the “class” is a fundamental concept. The literature shows that the
concept of class is not new to System Dynamics but has many different names and
definitions from component, to molecule to template. The significance is that the concept is
converging and to reach convergence better definition of terminology is required.

8. As simulation models increase in size and complexity, the use of object-oriented design will
be inevitable as an engineering discipline to manage development. The good news is that
there is a discipline available to leverage, object-oriented design, if System Dynamics wants
to use it.

 35

9. Object-oriented design crosses different areas of knowledge (e.g., biology, psychology,
ecology, and engineering). This is significant as a communication tool for modelers.

10. Users and customers will relate better to “objects” than other abstractions of their domains.
The better “buy-in” from the users and customers the more successful simulation and
modeling will be.

8 Conclusions
The major conclusions reached as a result of this research are as follow:

1) The work of Vlissides et al. (1995), Alexander et al. (1977), and Forrester (1990) affirm that
generic patterns are a basis for problem solving.

2) Similarly, Vlissides et al. (1995), Bruner. (1960), and Forrester (1990) affirm that structure is
fundamental to problem comprehension and understanding.

3) The literature shows a convergence between Object-Oriented Analysis and Design and
Simulation and Modeling with the discrete modeling community ahead in this trend as
compared to the continuous modeling community.

4) System Dynamics models, in general, meet most of the criteria to be object-oriented with the
exception of message handling unless Delta Time, time-step, qualifies as an notion of
“message”.

5) UML is just emerging as a tool in the Simulation and Modeling communities.

6) Design patterns can be useful in documenting and developing re-usable generic solutions on
top of the emerging object-oriented extensions to System Dynamics.

9 References
Ahmed, U. (1997). A process for designing and modeling with components. Proceedings of the

15th International System Dynamics Society. Turkey: System Dynamics Society.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., and Angel, S.,
(1977). A pattern language. New York: Oxford University Press.

Basnet, C., Farrington, P., Pratt, D., Kamath, M., Karacal, S., Beaumariage, T. (1990).
Experiences in developing an object-oriented modeling environment for manufacturing
systems. Proceedings of the 1990 Winter Simulation Conference. IEEE.

Bishak, D. & Roberts, S. (1991). Object-oriented simulation. Proceedings of the 1991 Winter
Simulation Conference. IEEE.

Braude, E. (1998). Towards a standard class framework for discrete event simulation.
Proceedings of 31st Annual Simulation Symposium.

Bruner, J. (1960). The process of education. Boston: Harvard University Press.

Corbin, D. (1994). Integrating archetypes and generic models into a framework for model
conceptualism. Proceedings of the International Systems Dynamics Society. Sterling: System
Dynamics Society.

 36

Eberlein, R. & Hines J. (1996). Molecules for modelers. Proceedings of the International System
Dynamics Society. Cambridge: System Dynamics Society.

Fayad, M. & Schmidt, D. (1997). Object-oriented application frameworks. Communication of
the ACM40.

Forrester, J. (1990). Principles of systems. Portland: Productivity Press.

Fowler, M. & Scott, K. (1997). UML distilled: Applying the standard object modeling language.
Reading: Addison-Wesley.

Goldgar, R. & Acosta, R. (1995). Integration of object-oriented analysis and performance
simulation for engineering computer-based systems. IEEE.

Joines, J. & Roberts, S. (1994). Design of object-oriented simulations in C++. Proceedings of the
1994 Winter Simulation Conference. IEEE.

Kortright, E. (1997). Modeling and simulation with UML and JAVA. IEEE.

Kovács, G., Kopácsi, S., & Kmecs, I. (1997). Simulation of FMS with the application of reuse
and object-oriented technology. Proceedings of the 1997 IEEE International Conference on
Robotics and Automation. Albuquerque: IEEE.

La Roche, U. (1994). A basic business loop as starting template for customized business-process-
engineering models. Proceedings of the International Systems Dynamics Society. Sterling:
System Dynamics Society.

Myrtveit, M., & Vavik, L. (1995). Object based dynamic modeling. Proceedings of the
International Systems Dynamics Society. Tokyo: System Dynamics Society.

Myrtveit, M. (2000). Object-oriented Extensions to System Dynamics. Proceedings of the
International Systems Dynamics Society. Bergen: System Dynamics Society.

Raczynski (1990). Pasion: object-oriented simulation on the PC. . Proceedings of the
International Systems Dynamics Society. Chestnut Hill: System Dynamics Society.

Robinson, J. & Kisner, R. (1989). An intelligent dynamic simulation environment: an object-
oriented approach. Proceedings of International Symposium on Intelligent Control. IEEE.

Robinson and Whisenhunt (1999). A powerPC platform full system simulation – from the
MOOSE up. International Performance, Computing, and Communications Conference.
Phoenix: IEEE.

Savino-Vázquez, N. & Puigjaner, R. (1999). UML-based method to specify the structural
component of simulation-based queuing network performance models. Proceedings 32nd
Annual Simulation Conference. Los Alamitos. IEEE Computer Society.

Senge, P. (1994). The fifth discipline: the art and practice of the learning organization. New
York: Doubleday.

Schöckle (1994). An object-oriented environment for modeling and simulation of large
continuous systems. (Available at
http://www.nmr.emblheidelberg.de/eduStep/…erences/OOCNS94/Proceedings/Schoeckle.ht
mal).

Taylor, D. (1990). Object-oriented technology: a manager’s guide. Reading: Addison-Wesley.

 37

Vlissides, J., Helm, R., Johnson, R., & Gamma, E. (1995). Design patterns: Elements of reusable
object-oriented software. Reading: Addison-Wesley.

Wolstenholme, E. & Corbin, D. (1993). Toward a core set of archetypal structures. Proceedings
of the International Systems Dynamics Society. Cancun: System Dynamics Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /NOR <FEFF005B0042006100730065007200740020007000E500200022005B005400720079006B006B00760061006C0069007400650074005D0022005D0020004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200065007200200062006500730074002000650067006E0065007400200066006F00720020006600F80072007400720079006B006B0073007500740073006B00720069006600740020006100760020006800F800790020006B00760061006C0069007400650074002E0020005000440046002D0064006F006B0075006D0065006E00740065006E00650020006B0061006E002000E50070006E00650073002000690020004100630072006F00620061007400200065006C006C00650072002000410064006F00620065002000520065006100640065007200200035002E003000200065006C006C00650072002000730065006E006500720065002E>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars true
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

