# Model Interchange Format (MIF)

# 1. Acknowledgments

I want to talk the System Dynamics Society for encouraging the definition and use of this standard.

I also thank Bob Eberlein for valuable input to the definition of the standard.

# 2. Background

The MIF standard is developed as a software independent way of representing dynamic simulation models. Typical uses of MIF will be for storing and transferring models. Examples include:

- Creation of model libraries
- Inclusion of model disks with text books
- Transfer of models using e-mail
- Automatic creation of models from other sources
- Automatic conversion of models to other formats, e.g. for inclusion in or use by other systems (e.g., authoring tools)

# 3. Requirements

MIF is designed to fill the following requirements.

- The bulk of existing system dynamic (SD) models should be possible to represent.
- Software packages should be allowed to include native information in MIF files. Native information is used to represent information that is not defined by the standard.
- MIF should be both backward and forward compatible. This means that models stored in a new version of MIF can be loaded into a tool supporting only an older MIF version, and vice versa.
- MIF files should transfer easily across (wide area) networks.

File:58MIF.DOCCreated:August 10, 1995Revised:September 12, 1995Pages:35Author:Magne Myrtveit<br/>ModellData ASStatus:DRAFT

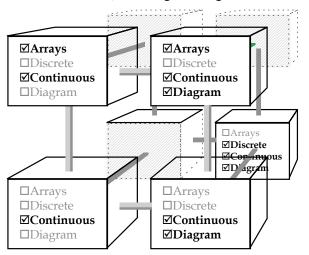
- MIF files should transfer easily across operating systems and hardware platforms, for example between Macintosh and MS-Windows.
- The MIF standard must allow for future expansions.
- Systems must be allowed to support only parts of the standard.
- MIF models should be possible to include in clipboard transfers, allowing for copy and paste between tools.

As a note, MIF is primarily not designed to be easily readable by humans. Visual appearance of MIF models (layout) is therefore not important to the standard.

# 4. Design guidelines

- The MIF standard is defined as a collection of features. A given model may use a subset – a given software may support a subset.
- Data in a MIF file is tagged. A tag is a label identifying information. Future expansion is done by adding more tags. Native information is included using tag names starting with an underscore.
- A MIF file consists of 7-bit ASCII text only<sup>1</sup>.

# 5. Categories of SD models

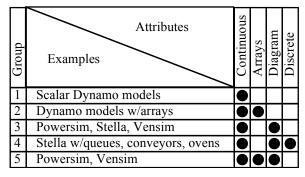

The following existing software packages are referred to as a background for defining the standard:

- *Dynamo* Professional Dynamo Plus, version ? from Pugh Roberts.
- Powersim Powersim version 2.0 from ModellData.
- *Stella* Refers to Stella version ? and Ithink version from High Performance Systems.

Vensim – Vensim version ? from Ventana.

<sup>&</sup>lt;sup>1</sup>Other characters are stored as escape sequences, as described in *Syntax definition of MIF*, page 27.

Current system dynamics models can be categorized in three dimensions, according to the figure below:




The left part holds models without diagram information, while the right hand side holds models with diagrams.

The bottom rows hold scalar models, while the top rows hold models using arrays.

The front holds continuous models, while the back holds models that also contain discrete variables (ovens, queues, conveyors).

Most current SD models fit into one of the five groups, listed below:



Group number 3 contains the bulk of existing models. By stripping off the diagram information, also the Dynamo software can *load* these models. Powersim, Stella and Vensim can both *load* and *store* models in this group.

For the above reasons version 1 of the MIF standard is defined for continuous, scalar models with graphical diagram information.

# 6. Comparison of SD tools

In the following the software tools Dynamo, Powersim, Stella and Vensim are compared in order to identify a common denominator that can be the basis for version 1 of the MIF standard. Part of the discussion does not include Dynamo, as it does not include a graphical editor to create models.

### 6.1 Documents, views, windows

All the tools have an equations view (text view). In addition one or more graphic visualizations (diagram views) can be present (none for Dynamo).

Powersim has only one diagram view per model, but several windows can be opened on the same view. Each window has its own viewing options.

Stella has a stock and flow view and a mapping view. In the mapping view sectors and bundled connectors/flows can be displayed. The views of Stella are different graphical representations (diagrams) of the model.

Vensim has an arbitrary number of views. Each view is edited separately. As with Stella, each view is a separate diagram representation of a model.

The figure below displays a structure capturing the way documents are organized for all four tools.

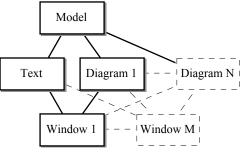
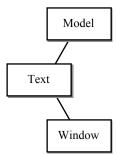
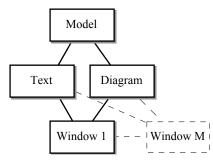



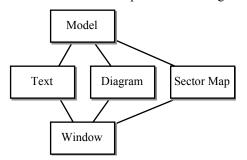

Figure 1: Structure of a model

Text and diagrams are "views" – that is, ways to present (visualize) a model is various ways. In particular, each diagram contains a set of symbols that used to represent static or dynamic information about a model. A window is used to display information contained in a view. Windows can filter information in various ways, for example by hiding certain symbol types. The user can switch between views to be displayed in a window.


#### 6.1.1 Dynamo documents

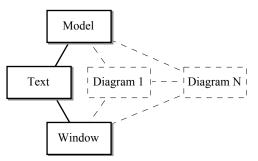


Dynamo does not have a graphical diagram editor, and only one window can be opened on a model. The figure to the left displays the structure of this system. It is easy to see how the structure is a special case of the structure in Figure 1.


#### 6.1.2 Powersim documents

Powersim has a textual and a graphical representation of a model. One or more windows can be opened. Each window can be switched between text view (equations) or diagram view. View options for both equations and diagram are stored along with each window. Again, the structure is a special case of Figure 1.

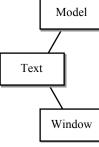



#### 6.1.3 Stella documents

Stella has an equations view, an accumulator flow diagram and a sector map. The diagram and the map are alternative graphical representations of a model. One window is used to display either the text, the diagram, or the map. If view options for all three model representations are stored within the window, we get a structure that can be generalized to an arbitrary number of windows (as for Powersim). Thus, Stella documents are also a special case of Figure 1.



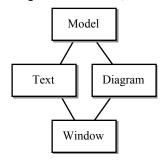
### 6.1.4 Vensim documents


Finally, the diagram below displays the way Vensim documents are organized. An arbitrary number of graphical views can be constructed for a model. In addition, the model equations can be viewed as text. One window is used to switch between views of the model.



### 6.1.5 MIF compatible documents

For models without diagram information, the structure


MIF files.



Model documents with this structure can be opened by Dynamo and Vensim, and possibly by future versions of Powersim and Stella.

to the left should be used for

For models with graphical diagram information, documents should be organized



as displayed below. Documents in this format can be loaded by Dynamo, Powersim, Stella and Vensim, (given that a MIF reader is included with the tools).

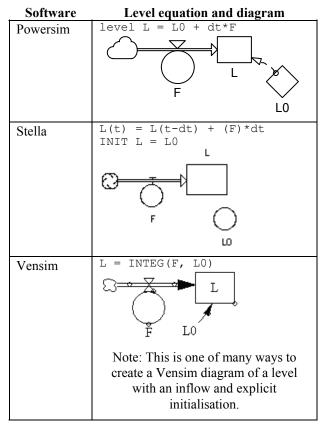
Future versions of Dynamo may or may not

be able to generate such models.

It should be noted that each tool may generate extra views (diagrams) and windows. Such extra information need not, however, be used by other tools reading the files. This means, for example, that:

- Powersim will not read the map view of a MIF file stored by Stella.
- Stella will only interpret the first window stored in a MIF file produced by Powersim.

- Powersim and Stella will only use the first diagram \_\_\_\_\_\_ "view" of a Vensim model<sup>2</sup>.
- Dynamo will only use the equations of a MIF model.


#### 6.2 Equations

If we leave array variables out, all equations are variable definitions. (Possible other equation types include range definitions (FOR variables) and unit of measure definitions.)

Variables can be divided into two groups, levels and non-levels. The non-levels can be further subdivided in various ways, depending on software.

#### 6.2.1 Levels

Level equations (and corresponding diagrams) are written like this in the various languages (L0 is the initial value of a level L, and F the flow.):



#### 6.2.2 Non-levels

For the remaining variable types we have the following example equations:

| Туре  | Powersim      | Stella          | Vensim          |
|-------|---------------|-----------------|-----------------|
| const | const L0 = 3  | L0 = 3          | L0 = 3          |
| aux   | aux $A = B*C$ | A=B*C           | A = B*C         |
| flow  | aux $F = A*2$ | flows:          | $F = A \star 2$ |
|       |               | $F = A \star 2$ |                 |

Powersim uses a tag (text or icon) to identify variable type. Stella uses an iconic tag in equations view. The tag is not copied when exporting equations as text. Vensim does not use tags – equation type is deduced from the right hand side of the equation. Dynamo uses one-letter tags.

Note that a Vensim equation like the following must be treated as a non-level (assuming L0 is not a constant):

L = L0 + INTEGR(F, 0)

This is because a level definition implicitly "freezes" the initial value. The following is OK for a level definition:

L = INIT(L0) + INTEGR(F, 0)

#### 6.2.3 Table lookup functions

Let us look at how the tools can make a lookup into the graph below.

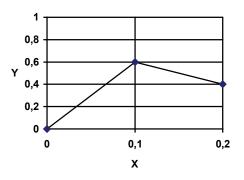



Figure 2: Example graph

#### 6.2.3.1 Graphs in Dynamo

Dynamo specifies graphs using table functions, which look like this:

TABLE(Vector, X,  $X_{lo}$ ,  $X_{hi}$ , Dx)

Dynamo has four table lookup functions, with different interpolation and/or asymptotes.

| Function | Interpolation | Asymptotes |
|----------|---------------|------------|
| TABLE    | Linear        | None       |
| TABPL    | Polynomial    | None       |
| TABHL    | Linear        | Horizontal |
| TABXT    | Linear        | Linear     |

<sup>&</sup>lt;sup>2</sup>The first Vensim view should be complete, i.e., all defined variables should be represented as symbols.

No asymptotes means that an error will occur if X is outside of the interval  $X_{lo}$  to  $X_{hi}$ .

Note that TABPL assumes that the vector argument has extra room at the end for internal use by the function.

The graph in Figure 2 can be expressed like this in Dynamo.

#### Graph referring to variable T

**A** Y = TABLE(T(\*), X, 0, 0.2, 0.1) **T** T(\*) = 0, 0.6, 0.4

#### 6.2.3.2 Graphs in Powersim

Powersim uses vectors to define y-values of fix points of a lookup function.

GRAPH(X, X<sub>0</sub>, Dx, Vector)

The vector argument can be either a literal or a vector variable. The fix points are evenly spaced in the X-direction.

The parameters  $X, X_0$ , and Dx can be any scalar expressions.

The following graph functions are defined:

| Function   | Interpolation | Asymptotes |
|------------|---------------|------------|
| GRAPH      | Linear        | Horizontal |
| GRAPHCURVE | Polynomial    | Linear     |
| GRAPHLINAS | Linear        | Linear     |
| GRAPHSTEP  | Horizontal    | Horizontal |

The example in Figure 2 can be expressed like this:

```
Alt. 1: Literal graph
```

**aux** Y=GRAPH(X,0,0.1,[0,0.6,0.4])

#### Alt. 2: Graph referring to variable T

**aux** Y = GRAPH(X,0,0.1,T) **const** T = [0,0.6,0.4]

In the above equations, "Min:0;Max:1" can be added as a comment inside the brackets.

#### 6.2.3.3 Graphs in Stella

Stella lists pairs of fix points for the graph. Arguments – excluding the independent variable – must be literals.

GRAPH(X) ( $(X_0, Y_0)$ ,  $(X_1, Y_1)$ ,  $(X_2, Y_2)$ , ...)

The fix points are evenly spaced in the X-direction. Stella supports both linear and horizontal interpolation (no distinction is made in equations view). The input parameter (X) must be a variable. A graph function cannot be part of an expression, i.e., a graph must represent the entire right hand side of an equation.

The example in Figure 2 can be expressed like this:

#### Literal graph

Y = GRAPH(X)(0.00, 0.00), (0.1, 0.6), (0.2, 0.4)

#### 6.2.3.4 Graphs in Vensim

Vensim lists pairs of fix points in a separate table variable. Fix points can be nonuniformly spaced along the X-dimension.

The example in Figure 2 can be expressed like this:

| Alt. 1: Graph referring to variable T |
|---------------------------------------|
| y = t(x)                              |
| t((0,0),(0.1,0.6),(0.2,0.4))          |

| Alt. 2      | : Gr | aph | referi | ring to | variable T |  |
|-------------|------|-----|--------|---------|------------|--|
| y=TABLE(t,  | x,   | Ο,  | 0.2,   | 0.1)    |            |  |
| t=0,0,6,0,4 | 4    |     |        |         |            |  |

Alternative 1 is a form that must be converted to uniformly spaced points along the x-axis when loaded by Dynamo, Powersim or Stella. This process can result in a large number of fix points. As an example the following definition of *t* would result in 1000 evenly spaced fix points!

t = ((0,1),(1,1),(100,1000),(1000,100000))

#### 6.2.3.5 Conclusion on graphs

Limitations imposed by the various tools:

- Stella does not support arrays (vectors).
- Stella requires the independent axis to be given as a variable (not an expression).
- Stella does not support graphs as part of an expression.
- Stella requires the list of Y-values to be literals.
- Dynamo and Vensim does not support literal arrays (vectors) as arguments to the table lookup functions.
- Dynamo, Powersim and Stella do not support variably spaced fix points in the X-direction.
- Dynamo and Vensim do not support horizontal (discrete) interpolation.

The table lookup functions (at level one of MIF) should be defined with the following properties:

- Input variable (X) should be defined as a variable reference (not an expression).
- A graph function must define the entire right hand side of an equation.
- Only linear interpolation and linear asymptotes are supported.
- No use of separate vector variables.
- List of Y values for fix points defined as a list of literals.
- List of X-values for fix points defined as literals with fixed lower limit (X0) and fixed distance (Dx).

Below is the definition of a graph function that fulfills the above list of requirements:

GRAPH(X,  $X_0$ , Dx,  $[Y_0, Y_1, \ldots Y_{n-1}]$ )

X must be the name of a (scalar) variable.  $X_0$ , Dx,  $Y_i$  must be literal numbers. The GRAPH function cannot be used as part of another expression. Brackets are used to group the Y values into a list (literal vector).

Dynamo and Vensim require a separate variable for holding  $Y_0$ ,  $Y_1$ , ... $Y_{n-1}$ . When loading a MIF file, these tools should generate a new table variable to hold this list. When storing a MIF file, Dynamo and Vensim should expand the vector inline into the GRAPH function, and optionally output a native tag defining the name of the table variable that was used in the graph.

As an example, the Dynamo definition

A Y = TABXT(T(\*), X, 0, 0.2, 0.1) T T(\*) = 0, 0.6, 0.4

would be represented like this in MIF (the syntax used below is explained starting on page 27):

{\var {\name Y} {\def GRAPH(X, 0, 0.1, [0, 0.6, 0.4])} {\\_tablename T} }

# 6.2.4 Resulting equations format

An equations format with only one equation per variable is preferred in setting the MIF standard.

More equation types will appear in future version of MIF.

The syntax of a level definition and other definitions should be similar. Both Powersim and Vensim has one equation per variable, and a similar syntax for levels and non-levels. (This was also true for Stella until the equations format was changed.)

As a conclusion, variable equations will be identified as objects with the following attributes:

| Attribute       | Explanation                                                                                                                                                                                                                                         |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name            | Variable name (left hand side of equation)                                                                                                                                                                                                          |
| Definition      | Variable definition (right hand side of equation)                                                                                                                                                                                                   |
| Documentation   | String describing the variable                                                                                                                                                                                                                      |
| Unit of measure | String defining the unit of measure                                                                                                                                                                                                                 |
| Туре            | One of the following: level,<br>auxiliary, constant. (Type can be<br>deduced from <i>definition</i> .)                                                                                                                                              |
| Scale           | Default minimum and maximum<br>value of the variable when<br>displayed e.g., in a graph. The<br>min/max values can be specified by<br>the user or set to the lowest/highest<br>value taken on by the variable<br>during the most recent simulation. |

# 6.3 Parameters to functions

Functions normally take scalar arguments than can be literals, variables or expressions. Some functions put restrictions on their parameters. Below is a list of parameter types.

| Parameter     | Explanation                                                                            |
|---------------|----------------------------------------------------------------------------------------|
| normal        | Any valid expression.                                                                  |
| literal       | The parameter must be a literal number                                                 |
| variable      | The parameter must be a variable reference                                             |
| start-up      | The initial value of the parameter<br>will be used for the entire<br>simulation        |
| computational | The parameter will be evaluated only when necessary                                    |
| delayed       | The parameter value will influence future results of the function using the parameter. |

In addition, some functions take optional parameters. Optional parameters can be left out from right to left.

The various software tools interpret the above parameter types slightly different.

*Computational parameters* are supported only by Powersim. The other tools handle computational parameters as normal parameters.

Powersim uses a separate delayed link in connection with *delayed parameters*. Delayed parameters in Powersim must be variables. Powersim allows for circular definitions if a delayed link is involved in the circle. Functions using delayed parameters include: DELAYINF, DELAYMTR, DELAYPPL.

The GRAPH functions use a *literal vector argument*. This does not mean that vectors variables need to be supported by the tools in order to use the GRAPH function.

# 6.4 List of functions

In order for a MIF model to load as unchanged as possible into the tool that was used to create the model, care has been taken to include as many functions from the various tools as possible.

We also want to avoid putting unnecessary limitations on the functions a user can use in a given tool when creating MIF models. The only function categories that are not defined by this MIF standard, are array functions and functions on discrete variables (conveyors, ovens, queues).

When loading a MIF file, unsupported functions should be mapped into equivalent expressions (or macros). Future releases of the software tools are encouraged to include MIF functions that are not possible to represent in current versions of the tools.

| Subtraction + |                                         |       |
|---------------|-----------------------------------------|-------|
| Syntax        | A - B                                   | Synta |
| In            | A, B - Any number.                      | In    |
| Result        | The difference between A and B.         | Resu  |
| Support       | Dynamo, Powersim, Stella, Vensim        | Supp  |
| Unary Minus   |                                         |       |
| Syntax        | - A                                     | Synta |
| In            | A - Any number.                         | In    |
| Result        | A negated, i.e., (0 - A).               | Resu  |
| Support       | Dynamo, Powersim, Stella, Vensim        | Supp  |
| ! - Factorial |                                         |       |
| Syntax        | A!                                      | Synta |
| In            | A - Any number.                         | In    |
| Result        | Not-a-number (=?), if A is less than 0. |       |

|   |             | 1, if A is zero.                                                                                                                                   |
|---|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|   |             | 1*2*3*4**A, if A is an integer.                                                                                                                    |
|   |             | Integrate(F) with $F = TIME^A * EXP(-TIME)$ , start time equal to 0.0, and stop time equal to infinity, if none of the above rules can be applied. |
|   | Example     | The following expression is true:                                                                                                                  |
|   |             | 3! = 6                                                                                                                                             |
|   | Support     | Powersim                                                                                                                                           |
|   | % - Perc    | ent                                                                                                                                                |
|   | Syntax      | A%                                                                                                                                                 |
|   | In          | A - Any number.                                                                                                                                    |
|   | Result      | A divided by 100.                                                                                                                                  |
|   | Example     | The following is true:                                                                                                                             |
|   |             | A/100 = A%                                                                                                                                         |
|   | Note        | Stella's % operator behaves different, and is listed under MOD.                                                                                    |
|   | Support     | Powersim                                                                                                                                           |
|   | * - Multi   | plication                                                                                                                                          |
|   | Syntax      | A * B                                                                                                                                              |
|   | In          | A, B - Any number.                                                                                                                                 |
|   | Result      | A multiplied by B.                                                                                                                                 |
|   | Support     | Dynamo, Powersim, Stella, Vensim                                                                                                                   |
| _ | + - Addit   | ion                                                                                                                                                |
|   | Syntax      | A + B                                                                                                                                              |
|   | In          | A, B - Any number.                                                                                                                                 |
|   | Result      | The sum of A and B.                                                                                                                                |
|   | Support     | Dynamo, Powersim, Stella, Vensim                                                                                                                   |
|   | + - Unary   | y plus                                                                                                                                             |
|   | Syntax      | + A                                                                                                                                                |
|   | In          | A - Any number.                                                                                                                                    |
|   | Result      | A unchanged.                                                                                                                                       |
|   | Support     | Dynamo, Powersim, Stella, Vensim                                                                                                                   |
|   | / - Divisio | )n                                                                                                                                                 |
| _ | Syntax      | A / B                                                                                                                                              |
|   | In          | A - Any number.                                                                                                                                    |
|   |             | B - Any number except 0.                                                                                                                           |
|   |             |                                                                                                                                                    |

| Result A divided by B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Support Dynamo, Powersim, Stella, Vensim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
| < - Less Than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
| Syntax A < B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |
| In A, B - Any number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| Result True if $A < B$ and False otherwise.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
| Support Powersim, Stella, Vensim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
| <= - Less Than or Equal To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
| Syntax $A \le B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
| In A, B - Any number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| Result True if A<=B and False otherwise.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
| Support Powersim, Stella, Vensim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
| <> - Not Equal To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |
| Syntax A <> B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
| In A, B - Any number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| Result True if $A \Leftrightarrow B$ and False otherwise.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |
| Note See note for =.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
| Support Powersim, Stella, Vensim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
| Support Powersim, Stella, Vensim<br>= - Equal To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
| Support Powersim, Stella, Vensim<br>= - Equal To<br>Syntax A = B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
| Support Powersim, Stella, Vensim<br>= - Equal To<br>Syntax A = B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
| SupportPowersim, Stella, Vensim= - Equal ToSyntaxA = BInA, B - Any number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )<br>even if<br>ot be<br>er. The |
| SupportPowersim, Stella, Vensim= - Equal ToSyntaxA = BInA, B - Any number.ResultTrue if A = B and False otherwise.NoteTesting for equality should be avoided possible, since no computer is able to represent all possible floating point numbers accurately. This means that the results of two expressions should theoretically be the same, this may not the case when executed on a computer following is an example of a "danger"                                                                                                                                                                                               | o<br>even if<br>ot be<br>er. The |
| SupportPowersim, Stella, Vensim= - Equal ToSyntaxA = BInA, B - Any number.ResultTrue if A = B and False otherwise.NoteTesting for equality should be avoide<br>possible, since no computer is able to<br>represent all possible floating point<br>numbers accurately. This means that<br>the results of two expressions should<br>theoretically be the same, this may not<br>the case when executed on a computer<br>following is an example of a "danger<br>expression:                                                                                                                                                             | o<br>even if<br>ot be<br>er. The |
| SupportPowersim, Stella, Vensim $= - Equal To$ Syntax $A = B$ InA, B - Any number.ResultTrue if $A = B$ and False otherwise.NoteTesting for equality should be avoided possible, since no computer is able to represent all possible floating point numbers accurately. This means that the results of two expressions should theoretically be the same, this may not the case when executed on a computer following is an example of a "danger expression:IF(TIME = 5, B, C)                                                                                                                                                        | o<br>even if<br>ot be<br>er. The |
| SupportPowersim, Stella, Vensim $= - Equal To$ Syntax $A = B$ InA, B - Any number.ResultTrue if $A = B$ and False otherwise.NoteTesting for equality should be avoided possible, since no computer is able to represent all possible floating point numbers accurately. This means that the results of two expressions should theoretically be the same, this may not the case when executed on a computer following is an example of a "danger expression:IF(TIME = 5, B, C)SupportPowersim, Stella, Vensim                                                                                                                         | o<br>even if<br>ot be<br>er. The |
| Support       Powersim, Stella, Vensim         = - Equal To         Syntax       A = B         In       A, B - Any number.         Result       True if A = B and False otherwise.         Note       Testing for equality should be avoided possible, since no computer is able to represent all possible floating point numbers accurately. This means that the results of two expressions should theoretically be the same, this may not the case when executed on a computer following is an example of a "danger expression:         IF(TIME = 5, B, C)         Support       Powersim, Stella, Vensim         > - Greater Than | o<br>even if<br>ot be<br>er. The |
| SupportPowersim, Stella, Vensim $= - Equal To$ Syntax $A = B$ InA, B - Any number.ResultTrue if $A = B$ and False otherwise.NoteTesting for equality should be avoided possible, since no computer is able to represent all possible floating point numbers accurately. This means that the results of two expressions should theoretically be the same, this may not the case when executed on a computer following is an example of a "danger expression:IF(TIME = 5, B, C)SupportPowersim, Stella, Vensim $> - Greater Than$ Syntax $A > B$                                                                                       | o<br>even if<br>ot be<br>er. The |

| >= - Grea             | ater Than or Equal To                                                                               |  |
|-----------------------|-----------------------------------------------------------------------------------------------------|--|
| Syntax                | $A \ge B$                                                                                           |  |
| In                    | A, B - Any number.                                                                                  |  |
| Result                | True if $A \ge B$ and False otherwise.                                                              |  |
| Support               | Powersim, Stella, Vensim                                                                            |  |
| ^ - Numb              | per Raised to a Power                                                                               |  |
| Syntax                | A^B                                                                                                 |  |
| In                    | A, B - Any non-negative number.                                                                     |  |
| Result                | Returns the value of A raised to the power of B, e.g., AB.                                          |  |
| Note                  | The expression A ^ 0 is 1 for all values of<br>A. The expression 0 ^ B is 0 for all<br>values of B. |  |
| Support               | Dynamo, Powersim, Vensim                                                                            |  |
| Dynamo                | A ** B                                                                                              |  |
| ABS - Ak              | osolute Value                                                                                       |  |
| Syntax                | ABS(X)                                                                                              |  |
| In                    | X - Any number.                                                                                     |  |
| Result                | The absolute value of X.                                                                            |  |
| Example               | The expression $ABS(-3) = 3$ is true.                                                               |  |
| Support               | Dynamo, Powersim, Stella, Vensim                                                                    |  |
| AND - C               | onjunction, Logical And                                                                             |  |
| Syntax                | A AND B                                                                                             |  |
| In                    | A, B - Any number.                                                                                  |  |
| Result                | True if both A and B are True, and False otherwise.                                                 |  |
| Note                  | A related (but not equivalent) way of expressing A AND B is:                                        |  |
|                       | A * B.                                                                                              |  |
| Support               | Powersim, Stella, Vensim                                                                            |  |
| Vensim                | :AND:                                                                                               |  |
| ARCCOS - Arcus Cosine |                                                                                                     |  |
| Syntax                | ARCCOS(Value)                                                                                       |  |
| In                    | Value from interval [-11].                                                                          |  |
| Result                | Angle defined by arcus sine of input value.<br>Angle lies in the interval [-Pi/2 Pi/2].             |  |
| Support               | Powersim                                                                                            |  |

| ARCSIN   | - Arcus Sine                                                                            |
|----------|-----------------------------------------------------------------------------------------|
| Syntax   | ARCSIN(Value)                                                                           |
| In       | Angle - Angle in radians.                                                               |
| Result   | Angle defined by arcus cosine of input value. Angle lies in the interval [0 Pi].        |
| Support  | Powersim                                                                                |
| ARCTAN   | N - Arcus Tangent                                                                       |
| Syntax   | ARCTAN(Value)                                                                           |
| In       | Value.                                                                                  |
| Result   | Angle defined by arcus tangent of input value. Angle lies in the interval <-Pi/2 Pi/2>. |
| Support  | Powersim, Stella, Vensim                                                                |
| ATSTAR   | <b>XT - Test for Beginning of Simulation</b>                                            |
| Syntax   | ATSTART                                                                                 |
| Result   | True at the very beginning of the simulation, and False otherwise.                      |
| Support  | Powersim                                                                                |
| AVG - A  | verage                                                                                  |
| Syntax   | AVG(X1, X2,XN)                                                                          |
| In       | X1, X2,XN - Any number (N >= 1)                                                         |
| Result   | The mean of the arguments, as defined by the expression:                                |
|          | (X1, X2,XN)/N                                                                           |
| Note     | At least one argument must be specified.                                                |
| Support  | Powersim, Stella                                                                        |
| Stella   | MEAN(X1, X2,XN)                                                                         |
| BOOL -   | Convert Number to Boolean                                                               |
| Syntax   | BOOL(X)                                                                                 |
| In       | X - Any number.                                                                         |
| Result   | Returns 1 if ROUND(X) is not zero, and 0 otherwise.                                     |
| Example  | The following expression is true:                                                       |
|          | $BOOL(X) = (ROUND(X) \Leftrightarrow 0)$                                                |
| Support  | Powersim                                                                                |
| CEIL - R | cound Number Up to Nearest Integer                                                      |
| Syntax   | CEIL(X)                                                                                 |
| In       | X - Any number.                                                                         |

| Result                                          | Returns the smallest integer that is greater than or equal to X.           |  |  |
|-------------------------------------------------|----------------------------------------------------------------------------|--|--|
| Support                                         | Powersim                                                                   |  |  |
| CLIP - II                                       | F Greater Than or Equal To                                                 |  |  |
| Syntax                                          | CLIP(P, Q, R, S)                                                           |  |  |
| In                                              | P, Q, R, S - Any numbers.                                                  |  |  |
| Result                                          | $IF(R \ge S, P, Q)$                                                        |  |  |
| Note                                            | Same as FIFGE                                                              |  |  |
| Support                                         | Dynamo                                                                     |  |  |
| COS - Co                                        | osine                                                                      |  |  |
| Syntax                                          | COS(Angle)                                                                 |  |  |
| In                                              | Angle - Angle in radians.                                                  |  |  |
| Result                                          | The cosine of Angle.                                                       |  |  |
| Support                                         | Dynamo, Powersim, Stella, Vensim                                           |  |  |
| COSH -                                          | Hyperbolic Cosine                                                          |  |  |
| Syntax                                          | COSH (Value)                                                               |  |  |
| In                                              | Value.                                                                     |  |  |
| Result                                          | The hyperbolic cosine of input value.                                      |  |  |
| Support                                         | Powersim, Vensim                                                           |  |  |
| COSWA                                           | VE - Periodic Cosine Wave                                                  |  |  |
| Syntax                                          | COSWAVE(Amplitude, Period)                                                 |  |  |
| In                                              | Amplitude - Amplitude of the wave.                                         |  |  |
|                                                 | Period - Period of the wave.                                               |  |  |
| Result                                          | A time-dependent cosine wave, defined by the equation:                     |  |  |
|                                                 | COSWAVE(A, P) = A * COS(TIME/P)                                            |  |  |
| Note                                            | Function depends on TIME.                                                  |  |  |
| Support                                         | Powersim, Stella                                                           |  |  |
| <b>DEGTOGRAD</b> - Convert Degrees to Gradients |                                                                            |  |  |
| Syntax                                          | DEGTOGRAD(Angle)                                                           |  |  |
| In                                              | Angle - Angle in degrees.                                                  |  |  |
| Result                                          | The equivalent of Angle measured in gradients, as defined by the equation: |  |  |
|                                                 | DEGTOGRAD(A) = A*400/360                                                   |  |  |
| Support                                         | Powersim                                                                   |  |  |
| DEGTO                                           | RAD - Convert Degrees to Radians                                           |  |  |
| Syntax                                          | DEGTORAD(Angle)                                                            |  |  |

| In | Angle - | Angle | in degrees. |
|----|---------|-------|-------------|
|    |         |       |             |

Result The equivalent of Angle measured in radians, as defined by the equation:

DEGTORAD(A) = A\*PI/180

Support Powersim

#### **DELAYINF - N-th Order Information Delay**

- Syntax DELAYINF(Input, DelayTime[, Order=1[, Initial(Order)=Input]]) Input - Variable to be delayed (delayed In parameter). DelayTime - Delay time measured in the time unit of the simulation. Order - Positive integer specifying the order of the delay. It defaults to 1 if not specified (optional start-up parameter). Initial - Initial delay value specified as a vector expression with Order number of elements. The elements of Initial default to the value of Input if not specified. If Initial has fewer elements than Order, the last element is replicated for the remaining values (optional start-up parameter). Result The n-th order exponential information delay of Input, using an exponential averaging time equal to DelayTime, a given delay order of Order, and a given Initial value for the delay. Order must be 1 or 3. Restrict Initial must be scalar (because of Stella). Support Powersim, Stella Stella SMTHN(Input, DelayTime, Order, Initial) **DELAYINF1 - First Order Information Delay** DELAYINF1(Input, DelayTime[, Syntax Initial=Input]) In Input - Variable to be delayed (delayed parameter). DelayTime - Delay time measured in the time unit of the simulation. Initial - Initial delay value. Initial defaults to the value of Input if not specified (optional start-up parameter).
- Result The first order exponential information delay of Input, using an exponential

averaging time equal to DelayTime, and a given Initial value for the delay.

- Restrict Initial must be omitted (because of Dynamo).
- Support Dynamo, Stella, Vensim
- Dynamo SMOOTH(Input, DelayTime)
- Stella SMTH1(Input, DelayTime[, Initial])
- Vensim SMOOTH(Input, DelayTime)

SMOOTHI(Input, DelayTime, Initial)

#### **DELAYINF3 - Third Order Information Delay**

- Syntax DELAYINF3(Input, DelayTime [, Initial[(3)]=Input]) In Input - Variable to be delayed (delay
  - Input Variable to be delayed (delayed parameter).
    - DelayTime Delay time measured in the time unit of the simulation.
    - Initial Initial delay value. Initial defaults to the value of Input if not specified (optional start-up parameter).
- Result The third order exponential information delay of Input, using an exponential averaging time equal to DelayTime, a given delay order of Order, and a given Initial value for the delay.
- Restrict Initial must be scalar (because of Stella). Initial must be omitted (because of Dynamo).
- Support Dynamo, Stella, Vensim
- Dynamo DLINF3(Input, DelayTime)
- Stella SMTH3(Input, DelayTime[, Initial])
- Vensim SMOOTH3(Input, DelayTime) SMOOTH3I(Input, DelayTime, Initial)

#### **DELAYMTR - N-th Order Material Delay**

| Syntax | DELAYMTR(Input, DelayTime[,<br>Order=1[, Initial(Order)=Input]])                                                        |  |
|--------|-------------------------------------------------------------------------------------------------------------------------|--|
| In     | Input - Variable to be delayed (delayed parameter).                                                                     |  |
|        | DelayTime - Delay time measured in the time unit of the simulation.                                                     |  |
|        | Order - Positive integer specifying the<br>order of the delay (optional start-up<br>parameter with default equal to 1). |  |

| Initial - Initial delay value specified as a |  |  |  |
|----------------------------------------------|--|--|--|
| vector expression, with Order defining       |  |  |  |
| the number of elements. The elements         |  |  |  |
| of Initial default to the value of Input if  |  |  |  |
| not specified. If Initial has fewer          |  |  |  |
| elements than Order, the last element is     |  |  |  |
| replicated for the remaining values          |  |  |  |
| (optional start-up parameter).               |  |  |  |

Result The n-th order exponential material delay of Input, using an exponential averaging time of DelayTime, a given delay Order, and a given Initial value for the delay.

Restrict Order must be 1 or 3. Initial must be scalar (because of Stella). Initial must be omitted (because of Dynamo).

Support Powersim

#### **DELAYMTR1 - First Order Material Delay**

- Syntax DELAYMTR1(Input, DelayTime [, Initial=Input]) Input - Variable to be delayed (delayed In parameter). DelayTime - Delay time measured in the time unit of the simulation. Initial - Initial delay value (optional start-up parameter). Result The first order exponential material delay of Input, using an exponential averaging time of DelayTime, and a given Initial value for the delay. Restrict Initial must be omitted (because of Dynamo). Support Dynamo, Vensim Dynamo DELAY1(Input, DelayTime) DELAY1(Input, DelayTime) Vensim DELAY1I(Input, DelayTime, Initial) **DELAYMTR3 - Third Order Material Delay** Syntax DELAYMTR3(Input, DelayTime [, Initial[(3)]=Input]) In Input - Variable to be delayed (delayed
  - parameter).
    - DelayTime Delay time measured in the time unit of the simulation.

Initial - Initial delay value (optional start-up parameter).

- Result The third order exponential material delay of Input, using an exponential averaging time of DelayTime, and a given Initial value for the delay.
- Restrict Initial must be scalar (because of Stella). Initial must be omitted (because of Dynamo).
- Support Dynamo, Vensim
- Dynamo DELAY3(Input, DelayTime)
- Vensim DELAY3(Input, DelayTime)
  - DELAY3I(Input, DelayTime, Initial)

### **DELAYPPL - Pipeline Delay**

In

- Syntax DELAYPPL(Input, DelayTime[, Initial=Input])
  - Input Variable to be delayed (delayed parameter).
    - DelayTime Delay time measured in the time unit of the simulation (start-up parameter).
    - Initial Initial delay value (optional start-up parameter with default equal to Input).
- Result The value of Input at DelayTime time units earlier in the simulation. During the first DelayTime time units of the simulation, the values specified by Initial are returned (Initial is a vector with one element per time step for a period equal to DelayTime).
- Support Powersim, Stella, Vensim
- Stella DELAY(Input, DelayTime, Initial)
- Vensim DELAY FIXED(Input, DelayTime, Initial)

### DELAYPPLINF - Variable Time Information Pipeline Delay

SyntaxDELAYPPLINF(Input, DelayTime,<br/>MaxDelayTime [, Initial=Input))InInput - Value to delayed (delayed<br/>parameter)DelayTime - Delay time measured in the<br/>time unit of the simulation.MaxDelayTime - Maximum delay time

MaxDelayTime - Maximum delay time measured in the time unit of the simulation.

|                                                        | This variable is used, in combination<br>with the simulation time step to<br>determine the maximum size of the<br>internal storage that is used by the<br>function.                                                      |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                        | Initial - Initial delay value (optional start-up parameter with default equal to Input).                                                                                                                                 |  |  |
| Result                                                 | The "infinite" order information delay of Input with delay time DelayTime.                                                                                                                                               |  |  |
| Note                                                   | The difference between DELAYPPLINF<br>and DELAYPPL is that DELAYPPLINF<br>will adjust to a changing DelayTime during<br>simulation (while DELAYPPL uses the<br>initial value of DelayTime for the entire<br>simulation). |  |  |
|                                                        | The difference between DELAYPPLMTR<br>and DELAYPPLINF lies in the transient<br>response to a change in DelayTime (see<br>Delay Functions).                                                                               |  |  |
|                                                        | Use DELAYPPL if the delay time is constant.                                                                                                                                                                              |  |  |
| Support                                                | Powersim                                                                                                                                                                                                                 |  |  |
| DELAYPPLMTR - Variable Time Material<br>Pipeline Delay |                                                                                                                                                                                                                          |  |  |
| Syntax                                                 | DELAYPPLMTR(Input, DelayTime,<br>MaxDelayTime [, Initial=Input))                                                                                                                                                         |  |  |
| In                                                     | Input - Value to delayed (delayed parameter)                                                                                                                                                                             |  |  |
|                                                        | DelayTime - Delay time measured in the time unit of the simulation.                                                                                                                                                      |  |  |
|                                                        | MaxDelayTime - Maximum delay time<br>measured in the time unit of the<br>simulation.                                                                                                                                     |  |  |

This variable is used, in combination with the simulation time step to determine the maximum size of the internal storage that is used by the function.

- Initial Initial delay value (optional start-up parameter with default equal to Input).
- Result The "infinite" order material delay of Input with delay time DelayTime.
- Note The difference between DELAYPPLMTR and DELAYPPL is that DELAYPPLMTR will adjust to a changing DelayTime during simulation (while DELAYPPL uses the

initial value of DelayTime for the entire simulation).

The difference between DELAYPPLMTR and DELAYPPLINF lies in the transient response to a change in DelayTime (see Delay Functions).

Use DELAYPPL if the delay time is constant.

#### Support Powersim

#### **DERIVN - N-th Order Time Derivative**

| Syntax                                                      | DERIVN(Input[, Order=1])                                                       |  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| In                                                          | Input - Expression to be derivated.                                            |  |
|                                                             | Order - Order of derivation. Default value is 1 (optional start-up parameter). |  |
| Result                                                      | Returns N-th Order time derivative of Input.                                   |  |
| Note                                                        | Function result depends on previous values of Input.                           |  |
| Support                                                     | Powersim, Stella                                                               |  |
| DIVZ0OP - Division with Zero Result for Zero<br>Denominator |                                                                                |  |
| Syntax                                                      | A DIVZ0OP B                                                                    |  |
| In                                                          | A, B - Any number.                                                             |  |

|                                                           | In                                                          | A, B - Any number. |  |
|-----------------------------------------------------------|-------------------------------------------------------------|--------------------|--|
|                                                           | Result                                                      | IF(B<>0, A/B, 0)   |  |
|                                                           | See also                                                    | DIVZ0              |  |
|                                                           | Support                                                     | Powersim           |  |
| DIVZ0 - Division with Zero Result for Zero<br>Denominator |                                                             |                    |  |
|                                                           | Syntax                                                      | DIVZ0(A, B)        |  |
|                                                           | In                                                          | A, B - Any number. |  |
|                                                           | Result                                                      | IF(B<>0, A/B, 0)   |  |
|                                                           | See also                                                    | DIVZ0              |  |
|                                                           | Support                                                     | Vensim             |  |
| )                                                         | Vensim                                                      | ZIDZ(,) ?          |  |
|                                                           | DIVZ1OP - Division with Unit Result for Zero<br>Denominator |                    |  |

| Syntax  | A DIVZ1OP B        |
|---------|--------------------|
| In      | A, B - Any number. |
| Result  | IF(B⇔0, A/B, 1)    |
| Support | Powersim           |

| DIVZX - Division with Explicit Result for Zero<br>Denominator |                                                                                                                                                                                                                                                                                                     |  |  |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Syntax                                                        | DIVZX(A, B, X)                                                                                                                                                                                                                                                                                      |  |  |
| In                                                            | A, B, X - Any number.                                                                                                                                                                                                                                                                               |  |  |
| Result                                                        | IF(B<>0, A/B, X)                                                                                                                                                                                                                                                                                    |  |  |
| Support                                                       | Powersim, Vensim                                                                                                                                                                                                                                                                                    |  |  |
| Vensim                                                        | XIDZ(,,) ?                                                                                                                                                                                                                                                                                          |  |  |
| EULER                                                         | - Sample at Start of Time Step                                                                                                                                                                                                                                                                      |  |  |
| Syntax                                                        | EULER(X)                                                                                                                                                                                                                                                                                            |  |  |
| In                                                            | X - Any variable (computational parameter).                                                                                                                                                                                                                                                         |  |  |
| Result                                                        | The value of X at the beginning of the current time step.                                                                                                                                                                                                                                           |  |  |
| Note                                                          | X must be a variable (expressions and literals are not allowed).                                                                                                                                                                                                                                    |  |  |
|                                                               | This function is sometimes useful with<br>higher order integration methods, where<br>several computations are performed<br>between each time step. If we want a value<br>(e.g., a rate) to be constant during the<br>intermediate calculations of a higher order<br>integration, EULER may be used. |  |  |
| Support                                                       | Powersim                                                                                                                                                                                                                                                                                            |  |  |
| EXP - Ex                                                      | xponential of Number                                                                                                                                                                                                                                                                                |  |  |
| Syntax                                                        | EXP(X)                                                                                                                                                                                                                                                                                              |  |  |
| In                                                            | X - Any number.                                                                                                                                                                                                                                                                                     |  |  |
| Result                                                        | Returns the exponential of X (e raised to the power of X (ex)).                                                                                                                                                                                                                                     |  |  |
| Note                                                          | This is the inverse function of LN, i.e., $LN(EXP(X)) = X.$                                                                                                                                                                                                                                         |  |  |
| Restrict:                                                     | $-174 \le X \le 174$ (Dynamo)                                                                                                                                                                                                                                                                       |  |  |
| Support                                                       | Dynamo, Powersim, Stella, Vensim                                                                                                                                                                                                                                                                    |  |  |
| EXPRNI                                                        | D - Exponential Distribution                                                                                                                                                                                                                                                                        |  |  |
| Syntax                                                        | EXPRND ([Mean=1[, Seed]])                                                                                                                                                                                                                                                                           |  |  |
| In                                                            | Mean - Mean value of distribution (optional parameter with default equal to one).                                                                                                                                                                                                                   |  |  |
|                                                               | Seed - Initialization of random number<br>generator (optional start-up parameter<br>with random default value).                                                                                                                                                                                     |  |  |
| Result                                                        | Generates a series of exponentially<br>distributed random numbers with a mean of<br>Mean.                                                                                                                                                                                                           |  |  |

| EXPRND(5) is the same as 5*EXPRND,<br>both generating a series of exponentially<br>distributed numbers with a mean of 5.SupportPowersim, StellaVensimRANDOM_EXPONENTIAL() no args!FALSE - Logical FalseSyntaxFALSEResultThe value zero.SupportPowersimFIFGE - First If Greater Than or Equal ToSyntaxFIFGE(P, Q, R, S)InP, Q, R, S - Any numbers.ResultIF(R >= S, P, Q)NoteSame as CLIP.<br>Use IF instead.SupportDynamoFIFZE - First If Third is ZeroSyntaxFIFZE(P, Q, R)InP, Q, R - Any numbers.ResultIF(R = 0, P, Q), which is the same as<br>IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamoFLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersimFORECXT - Value ForecastingSyntaxFORECAST (Input, PastTime, | Examples                     | xamples EXPRND generates exponentially<br>distributed random numbers with mean<br>equal to 1. |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------|--|
| VensimRANDOM_EXPONENTIAL() no args!FALSE - Logical FalseSyntaxFALSEResultThe value zero.SupportPowersimFIFGE - First If Greater Than or Equal ToSyntaxFIFGE(P, Q, R, S)InP, Q, R, S - Any numbers.ResultIF(R >= S, P, Q)NoteSame as CLIP.<br>Use IF instead.SupportDynamoFIFZE - First If Third is ZeroSyntaxFIFZE(P, Q, R)InP, Q, R - Any numbers.ResultIF(R = 0, P, Q), which is the same as<br>IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamoFLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersimFORECAST - Value Forecasting                                                                                                                                                                               |                              | both generating a series of exponentially                                                     |  |
| FALSE - Logical FalseSyntaxFALSEResultThe value zero.SupportPowersimFIFGE - First If Greater Than or Equal ToSyntaxFIFGE(P, Q, R, S)InP, Q, R, S - Any numbers.ResultIF(R >= S, P, Q)NoteSame as CLIP.<br>Use IF instead.SupportDynamoFIFZE - First If Third is ZeroSyntaxFIFZE(P, Q, R)InP, Q, R - Any numbers.ResultIF(R = 0, P, Q), which is the same as<br>IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamoFLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersimFORECAST - Value Forecasting                                                                                                                                                                                                                  | Support                      | Powersim, Stella                                                                              |  |
| SyntaxFALSEResultThe value zero.SupportPowersim <b>FIFGE - First If Greater Than or Equal To</b> SyntaxFIFGE(P, Q, R, S)InP, Q, R, S - Any numbers.ResultIF(R >= S, P, Q)NoteSame as CLIP.<br>Use IF instead.SupportDynamo <b>FIFZE - First If Third is Zero</b> SyntaxFIFZE(P, Q, R)InP, Q, R - Any numbers.ResultIF(R = 0, P, Q), which is the same as<br>IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamo <b>FLOOR - Round Number Down to Nearest Integer</b> SyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersim <b>FORECAST - Value Forecasting</b>                                                                                                                                                                                                    | Vensim                       | RANDOM_EXPONENTIAL() no args!                                                                 |  |
| ResultThe value zero.SupportPowersim <b>FIFGE - First If Greater Than or Equal To</b> SyntaxFIFGE(P, Q, R, S)InP, Q, R, S - Any numbers.ResultIF(R>= S, P, Q)NoteSame as CLIP.<br>Use IF instead.SupportDynamo <b>FIFZE - First If Third is Zero</b> SyntaxFIFZE(P, Q, R)InP, Q, R - Any numbers.ResultIF(R = 0, P, Q), which is the same as<br>IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamo <b>FLOOR - Round Number Down to Nearest Integer</b> SyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersim <b>FOREC-ST - Value Forecasting</b>                                                                                                                                                                                                                | FALSE -                      | Logical False                                                                                 |  |
| SupportPowersimFIFGE - First If Greater Than or Equal ToSyntaxFIFGE(P, Q, R, S)InP, Q, R, S - Any numbers.ResultIF(R>= S, P, Q)NoteSame as CLIP.<br>Use IF instead.SupportDynamoFIFZE - First If Third is ZeroSyntaxFIFZE(P, Q, R)InP, Q, R - Any numbers.ResultIF(R = 0, P, Q), which is the same as<br>IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamoFLOORNoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamoFLOOR to DynamoFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersimFOREC+To Value Forecasting                                                                                                                                                                                                                                            | Syntax                       | FALSE                                                                                         |  |
| FIFGE - First If Greater Than or Equal ToSyntaxFIFGE(P, Q, R, S)InP, Q, R, S - Any numbers.ResultIF(R >= S, P, Q)NoteSame as CLIP.<br>Use IF instead.SupportDynamoFIFZE - First If Third is ZeroSyntaxFIFZE(P, Q, R)InP, Q, R - Any numbers.ResultIF(R = 0, P, Q), which is the same as<br>IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamoFLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersimFORECAST - Value Forecasting                                                                                                                                                                                                                                                                                      | Result                       | The value zero.                                                                               |  |
| SyntaxFIFGE(P, Q, R, S)InP, Q, R, S - Any numbers.ResultIF( $R \ge S, P, Q$ )NoteSame as CLIP.<br>Use IF instead.SupportDynamoFIFZE - First If Third is ZeroSyntaxFIFZE(P, Q, R)InP, Q, R - Any numbers.ResultIF( $R = 0, P, Q$ ), which is the same as<br>IF( $R, Q, P$ ).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamoFLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersimFORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                  | Support                      | Powersim                                                                                      |  |
| InP, Q, R, S - Any numbers.ResultIF(R >= S, P, Q)NoteSame as CLIP.<br>Use IF instead.SupportDynamo <b>FIFZE - First If Third is Zero</b> SyntaxFIFZE(P, Q, R)InP, Q, R - Any numbers.ResultIF(R = 0, P, Q), which is the same as<br>IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamo <b>FLOOR - Round Number Down to Nearest Integer</b> SyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersim <b>FORECAST - Value Forecasting</b>                                                                                                                                                                                                                                                                                                                            | FIFGE -                      | First If Greater Than or Equal To                                                             |  |
| ResultIF(R >= S, P, Q)NoteSame as CLIP.<br>Use IF instead.SupportDynamoFIFZE - First If Third is ZeroSyntaxFIFZE(P, Q, R)InP, Q, R - Any numbers.ResultIF(R = 0, P, Q), which is the same as<br>IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamoFLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersimFORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                 | Syntax                       | FIFGE(P, Q, R, S)                                                                             |  |
| NoteSame as CLIP.<br>Use IF instead.SupportDynamoFIFZE - First If Third is ZeroSyntaxFIFZE(P, Q, R)InP, Q, R - Any numbers.ResultIF(R = 0, P, Q), which is the same as<br>IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamoFLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersimFORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                       | In                           | P, Q, R, S - Any numbers.                                                                     |  |
| Use IF instead.Support DynamoFIFZE - First If Third is ZeroSyntaxFIFZE(P, Q, R)InP, Q, R - Any numbers.ResultIF(R = 0, P, Q), which is the same as<br>IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamoFLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersimFORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                           | Result                       | $IF(R \ge S, P, Q)$                                                                           |  |
| SupportDynamoFIFZE - First If Third is ZeroSyntaxFIFZE(P, Q, R)InP, Q, R - Any numbers.ResultIF(R = 0, P, Q), which is the same as<br>IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamoFLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersimFOREC+ST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                           | Note                         | Same as CLIP.                                                                                 |  |
| FIFZE - First If Third is ZeroSyntaxFIFZE(P, Q, R)InP, Q, R - Any numbers.ResultIF(R = 0, P, Q), which is the same as<br>IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamoFLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersimFORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | Use IF instead.                                                                               |  |
| SyntaxFIFZE(P, Q, R)InP, Q, R - Any numbers.ResultIF(R = 0, P, Q), which is the same as<br>IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamoFLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersimFORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Support                      | Dynamo                                                                                        |  |
| InP, Q, R - Any numbers.ResultIF(R = 0, P, Q), which is the same as<br>IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamoFLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersimFORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FIFZE -                      | First If Third is Zero                                                                        |  |
| ResultIF(R = 0, P, Q), which is the same as<br>IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamoFLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersimFORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Syntax                       | FIFZE(P, Q, R)                                                                                |  |
| IF(R, Q, P).NoteSame as Dynamo's SWITCH.<br>Use IF instead.SupportDynamoFLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR $(3.14) = 3$<br>FLOOR $(-5.5) = -6$ SupportPowersimFORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | In                           | P, Q, R - Any numbers.                                                                        |  |
| Use IF instead.Support DynamoFLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersimFORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Result                       |                                                                                               |  |
| Support DynamoFLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR $(3.14) = 3$<br>FLOOR $(-5.5) = -6$ SupportPowersimFORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Note                         | Same as Dynamo's SWITCH.                                                                      |  |
| FLOOR - Round Number Down to Nearest IntegerSyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR $(3.14) = 3$<br>FLOOR $(-5.5) = -6$ SupportPowersimFORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | Use IF instead.                                                                               |  |
| SyntaxFLOOR(X)InX - Any number.ResultReturns the largest integer that is less than<br>or equal to X.ExamplesFLOOR (3.14) = 3<br>FLOOR (-5.5) = -6SupportPowersimFORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Support                      | Dynamo                                                                                        |  |
| In X - Any number.<br>Result Returns the largest integer that is less than<br>or equal to X.<br>Examples FLOOR $(3.14) = 3$<br>FLOOR $(-5.5) = -6$<br>Support Powersim<br>FORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FLOOR                        | - Round Number Down to Nearest Integer                                                        |  |
| Result Returns the largest integer that is less than<br>or equal to X.<br>Examples FLOOR $(3.14) = 3$<br>FLOOR $(-5.5) = -6$<br>Support Powersim<br>FORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Syntax                       | FLOOR(X)                                                                                      |  |
| or equal to X.<br>Examples FLOOR (3.14) = 3<br>FLOOR (-5.5) = -6<br>Support Powersim<br>FORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | In                           | X - Any number.                                                                               |  |
| FLOOR (-5.5) = -6<br>Support Powersim<br>FORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Result                       |                                                                                               |  |
| Support Powersim<br>FORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Examples                     | s FLOOR (3.14) = 3                                                                            |  |
| FORECAST - Value Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | FLOOR $(-5.5) = -6$                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Support                      | Powersim                                                                                      |  |
| Syntax FORECAST (Input, PastTime,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FORECAST - Value Forecasting |                                                                                               |  |
| FutureTime[, Initial=0])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Syntax                       |                                                                                               |  |

| In                | Input - Value to be predicted.                                                                                                                                                                                                                                                   |    |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|                   | PastTime - Positive number determining the averaging time used in computing the                                                                                                                                                                                                  | ę  |  |
|                   | trend in Input, measured in the time unit                                                                                                                                                                                                                                        | ]  |  |
|                   | of the simulation.                                                                                                                                                                                                                                                               | ]  |  |
|                   | FutureTime - Non-negative number<br>determining how far into the future a<br>forecast is going to be, measured in the<br>time unit of the simulation.                                                                                                                            | 6  |  |
|                   | Initial - Initial trend value (optional start-up parameter with default equal to zero).                                                                                                                                                                                          | -  |  |
| Result            | The forecaster value of Input at a time<br>FutureTime into the future. The function<br>computes the first order exponential<br>average of Input by using an averaging time<br>of PastTime, and then extrapolates the trend<br>a distance equal to FutureTime into the<br>future. |    |  |
| Note              | The function depends on previous values of its first parameter.                                                                                                                                                                                                                  |    |  |
| Support           | Powersim, Stella                                                                                                                                                                                                                                                                 | e. |  |
| FRAC -            | Fraction of Number                                                                                                                                                                                                                                                               | ]  |  |
| Syntax            | FRAC(X)                                                                                                                                                                                                                                                                          |    |  |
| In                | X - Any number.                                                                                                                                                                                                                                                                  |    |  |
| Result            | The fractional (decimal) part of X.                                                                                                                                                                                                                                              |    |  |
| Note              | The relationship between X, INT(X) and FRAC(X) is the following (for all values of X):                                                                                                                                                                                           | ]  |  |
|                   | X = INT(X) + FRAC(X)                                                                                                                                                                                                                                                             |    |  |
| Examples          | FRAC(3.14) = 0.14                                                                                                                                                                                                                                                                |    |  |
|                   | FRAC(-5.5) = -0.5                                                                                                                                                                                                                                                                |    |  |
| Support           | Powersim                                                                                                                                                                                                                                                                         |    |  |
| FV - Future Value |                                                                                                                                                                                                                                                                                  |    |  |
| Syntax            | FV (Rate, Periods, Payment, PresentValue)                                                                                                                                                                                                                                        |    |  |
| In                | Rate - Rate per period.                                                                                                                                                                                                                                                          |    |  |
|                   | Periods - Number of periods.                                                                                                                                                                                                                                                     |    |  |
|                   | Payment - Periodic payment.                                                                                                                                                                                                                                                      |    |  |
|                   | PresentValue - Present value.                                                                                                                                                                                                                                                    |    |  |
| Result            | Future value (see Introduction to Financial Functions)                                                                                                                                                                                                                           |    |  |
| Support           | Powersim, Stella                                                                                                                                                                                                                                                                 |    |  |

# **GRADTODEG - Convert Gradients to Degrees**

| GRADT                                                                                                                                                | <b>ODEG - Convert G</b>                                                                                                                            | Fradients to Degrees   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| Syntax                                                                                                                                               | GRADTODEG (A                                                                                                                                       | ngle)                  |  |
| In                                                                                                                                                   | Angle - Angle in gradients.                                                                                                                        |                        |  |
| Result                                                                                                                                               | The equivalent of Angle measured in radians, as defined by:                                                                                        |                        |  |
|                                                                                                                                                      | GRADTODEG(A) = A*360/400                                                                                                                           |                        |  |
| Support                                                                                                                                              | Powersim                                                                                                                                           |                        |  |
| GRADT                                                                                                                                                | ORAD - Convert G                                                                                                                                   | Fradients to Radians   |  |
| Syntax                                                                                                                                               | GRADTORAD (A                                                                                                                                       | ngle)                  |  |
| In                                                                                                                                                   | Angle - Angle in g                                                                                                                                 | radients.              |  |
| Result                                                                                                                                               | The equivalent of a radians, as defined                                                                                                            |                        |  |
|                                                                                                                                                      | GRADTORAD(A)                                                                                                                                       | A*PI/200               |  |
| Support                                                                                                                                              | Powersim                                                                                                                                           |                        |  |
|                                                                                                                                                      | LINAS - Linear Gr<br>1ptotes                                                                                                                       | aph with Linear        |  |
| Syntax                                                                                                                                               | GRAPHLINAS (X                                                                                                                                      | X, X1, Dx, Y(N))       |  |
| In                                                                                                                                                   | X - Any number (i                                                                                                                                  | ndependent variable).  |  |
|                                                                                                                                                      | X1 - Value of X corresponding to the first sample, i.e., Y(1).                                                                                     |                        |  |
|                                                                                                                                                      | Dx - Increment between sampled X-values.<br>Must be positive.                                                                                      |                        |  |
|                                                                                                                                                      | Y - Vector with at                                                                                                                                 | least one element.     |  |
| Result                                                                                                                                               | GRAPHLINAS is used to express a<br>function by giving a set of function values<br>for a series of equally spaced input values,<br>as listed below: |                        |  |
|                                                                                                                                                      | <u>Input</u>                                                                                                                                       | Output                 |  |
|                                                                                                                                                      | X1                                                                                                                                                 | Y(1)                   |  |
|                                                                                                                                                      | X1+Dx                                                                                                                                              | Y(2)                   |  |
|                                                                                                                                                      | X1+2*Dx                                                                                                                                            | Y(3)                   |  |
|                                                                                                                                                      |                                                                                                                                                    |                        |  |
|                                                                                                                                                      | X1+(N-1)*Dx                                                                                                                                        | Y(N)                   |  |
| If X is less than X1 then the value is<br>extrapolated on the basis of Y(1) and Y(2),<br>i.e., a line through the two first points of the<br>sample. |                                                                                                                                                    |                        |  |
|                                                                                                                                                      | If X is greater than                                                                                                                               | X1 + (N-1)*Dx then the |  |

If X is greater than X1 + (N-1)\*Dx then the value is extrapolated on the basis of the last two points in the sample, i.e., Y(N-1) and Y(N). This means that the function

|           | uses linear asymptotes based on the two<br>most extreme points at both edges of the<br>sample.                                                                                                                                                              |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Restrict  | Dynamo and Vensim require a separate<br>table variable to create a table lookup<br>function. Table variables will not be<br>exported to the MIF file. Instead the table<br>elements will be expanded inline into the<br>[] part of the GRAPHLINAS function. |
|           | Stella does not support table lookup as part of an expression.                                                                                                                                                                                              |
|           | Stella requires X to be a variable.                                                                                                                                                                                                                         |
|           | Stella requires X1 and Dx to be literals.                                                                                                                                                                                                                   |
| Support   | Dynamo, Powersim, Stella, Vensim                                                                                                                                                                                                                            |
| Dynamo    | TABXL(T, X1, X1 + (N-1)*Dx, Dx)                                                                                                                                                                                                                             |
|           | T = Y(1), Y(2),, Y(N-1), Y(N)                                                                                                                                                                                                                               |
| Vensim    | TABXL(T, X1, X1 + (N-1)*Dx, Dx)                                                                                                                                                                                                                             |
|           | T = Y(1), Y(2),, Y(N-1), Y(N)                                                                                                                                                                                                                               |
| Stella    | Generated by Become Graph.                                                                                                                                                                                                                                  |
| HIVAL -   | Highest Simulated Value                                                                                                                                                                                                                                     |
| Syntax    | HIVAL(X)                                                                                                                                                                                                                                                    |
| In        | X - Any number.                                                                                                                                                                                                                                             |
| Return    | The highest value of the expression X so far in the simulation.                                                                                                                                                                                             |
| Note      | Function depends on previous values of its parameter.                                                                                                                                                                                                       |
| Support   | Powersim                                                                                                                                                                                                                                                    |
| НҮРОТ     | - Hypotenuse                                                                                                                                                                                                                                                |
| Syntax    | HYPOT(X, Y)                                                                                                                                                                                                                                                 |
| In        | X, Y - Any number.                                                                                                                                                                                                                                          |
| Result    | The square root of $X^2 + Y^2$ , i.e., the length<br>of the hypotenuse of a square-angled<br>triangle. This may also be expressed as:<br>SQRT(X^2+Y^2).                                                                                                     |
| Support   | Powersim                                                                                                                                                                                                                                                    |
| IF - Arit | hmetic If                                                                                                                                                                                                                                                   |
|           |                                                                                                                                                                                                                                                             |

| Syntax | IF(Condition, Value1, Value2)                              |
|--------|------------------------------------------------------------|
| In     | Condition - Logical value (True or False).                 |
|        | Value1 - Any numeric expression (computational parameter). |

Value2 - Any numeric expression (computational parameter).

|           | (computational parameter).                                                                                                                           |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result    | The value of Value1 is evaluated and<br>returned if Condition is True. The value of<br>Value2 is evaluated and returned otherwise.                   |
| Support   | Dynamo, Powersim, Stella, Vensim                                                                                                                     |
| Powersim  | Will compute only one of Value1 or Value2.                                                                                                           |
| Dynamo    | SWITCH(Value2, Value1, Cond)                                                                                                                         |
|           | FIFZE(Value2, Value1, Cond)                                                                                                                          |
| Stella    | IF Cond THEN Value 1 ELSE Value2                                                                                                                     |
| Vensim    | IF_THEN_ELSE(Cond, Value1, Value2)                                                                                                                   |
| INFINIT   | Y - Infinitely Large Positive Number                                                                                                                 |
| Syntax    | INFINITY                                                                                                                                             |
| Result    | A value that is used to represent a number<br>that is too large to be represented by the<br>computer.                                                |
| Note      | Use -INFINITY to denote an infinitely large negative number.                                                                                         |
|           | The largest number that may be stored by Powersim is 1.0E+300.                                                                                       |
| Support   | Powersim                                                                                                                                             |
| INIT - In | itial Value                                                                                                                                          |
| Syntax    | INIT(X)                                                                                                                                              |
| In        | X - Any numeric expression (computational start-up parameter).                                                                                       |
| Result    | The initial value of X.                                                                                                                              |
| Note      | The function depends on previous value of its parameter.                                                                                             |
|           | X will only be evaluated during the initialization stage of the simulation, and the resulting value will be returned for the rest of the simulation. |
| Restrict  | X must be a level variable (because of Stella)                                                                                                       |
| Support   | Powersim, Stella, Vensim                                                                                                                             |
| Stella    | INIT(X)                                                                                                                                              |
|           |                                                                                                                                                      |
| Vensim    | INITIAL(X)                                                                                                                                           |
|           | INITIAL(X) eger Part of Number                                                                                                                       |
|           |                                                                                                                                                      |
| INT - Int | eger Part of Number                                                                                                                                  |

Result Returns the integer part of X.

Note The relationship between X, INT(X) and FRAC(X) is the following (for all values of X):

X = INT(X) + FRAC(X)

Examples INT(3.14) = 3

INT(-5.5) = -5

- Support Powersim, Stella, Vensim
- Vensim INTEGER(X)

### **INTEGRATE - Integration**

| Syntax   | INTEGRATE(X[, Init=0])                                                                                                                                                   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In       | X - Variable to be integrated over time (delayed parameter).                                                                                                             |
|          | Init - Initial value (optional start-up parameter).                                                                                                                      |
| Result   | Init plus the integrated value of X, i.e., Init<br>plus the sum Xt/Dt for all time steps from<br>the beginning of the simulation to the<br>current time.                 |
| Note     | The function depends on previous values of its parameter.                                                                                                                |
| Restrict | Powersim: X must be a variable<br>(expressions and literals are not allowed),<br>and in the diagram X must be connected to<br>the current variable using a delayed link. |
| Support  | Powersim, Vensim                                                                                                                                                         |
| Vensim   | INTEGR(X, Init)                                                                                                                                                          |
| Powersin | n INTEGRATE(X) should add optional<br>Init                                                                                                                               |

# ISGT - Greater Than

| Syntax                 | ISGT(A, B)                |  |
|------------------------|---------------------------|--|
| In                     | A, B - Any numbers.       |  |
| Result                 | Same as $A > B$ .         |  |
| Note                   | Use > instead.            |  |
| Support                | Stella                    |  |
| Stella                 | SWITCH(A, B) = ISGT(A, B) |  |
| LN - Natural Logarithm |                           |  |
| Syntax                 | LN(X)                     |  |
| In                     | X - Any positive number.  |  |
|                        |                           |  |

Result The natural logarithm of X.

Support Dynamo, Powersim, Stella, Vensim

| Support                        | Dynamo, i owersnin, Stena, vensnin                                      |  |
|--------------------------------|-------------------------------------------------------------------------|--|
| Dynamo                         | LOGN(X)                                                                 |  |
| Stella                         | LOGN(X)                                                                 |  |
| LOG - B                        | ase N Logarithm                                                         |  |
| Syntax                         | LOG(X[, Base=10])                                                       |  |
| In                             | X - Any positive number.                                                |  |
|                                | Base - Base of logarithm (optional parameter with default equal to 10). |  |
| Result                         | The base N logarithm of X.                                              |  |
| Support                        | Powersim, Vensim                                                        |  |
| LOG10 -                        | Base 10 logarithm                                                       |  |
| Syntax                         | LOG10(X)                                                                |  |
| In                             | X - Any positive number.                                                |  |
| Result                         | The base 10 logarithm of X.                                             |  |
| Support                        | Stella                                                                  |  |
| LOVAL - Lowest Simulated Value |                                                                         |  |
| Syntax                         | LOVAL (X)                                                               |  |
| In                             | X - Any number.                                                         |  |
| Result                         | The lowest value of the expression X so far in the simulation.          |  |
| Note                           | The function depends on previous values of its parameter.               |  |
| Support                        | Powersim                                                                |  |
| MAX - N                        | /laximum                                                                |  |
| Syntax                         | MAX(X1, X2,XN)                                                          |  |
| In                             | X1, X2,XN - Any number.                                                 |  |
| Result                         | The maximum of the arguments.                                           |  |
| Restrict                       | N=2 (because of Dynamo and Vensim)                                      |  |
| Support                        | Dynamo, Powersim, Stella, Vensim                                        |  |
| MIN - Minimum                  |                                                                         |  |
| Syntax                         | MIN(X1, X2,XN)                                                          |  |
| In                             | X1, X2,XN - Any number.                                                 |  |
| Result                         | The minimum of the arguments.                                           |  |
| Restrict                       | N=2 (because of Dynamo and Vensim)                                      |  |
| Support                        | Dynamo, Powersim, Stella, Vensim                                        |  |
| MOD - F                        | Remainder of Division                                                   |  |
| Suntay                         |                                                                         |  |

Syntax A MOD B

| In       | A - Any number.                                           | In       | Mean - Mean value of distribution, with                                                                                    |
|----------|-----------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------|
|          | B - Any number except zero.                               |          | default equal to 0 (optional parameter).                                                                                   |
| Result   | The remainder of A / B, defined as the value R such that: |          | Deviation - Deviation of distribution, with default equal to 1 (optional parameter).                                       |
|          | A = B * k + R                                             |          | Seed - Initialization of random number generator (optional start-up parameter with                                         |
|          | where k is an integer and ABS(R) < ABS(B).                |          | random default value).                                                                                                     |
| See also | MODULO                                                    | Result   | Generates a series of normally distributed<br>random numbers with a mean of Mean and<br>a standard deviation of Deviation. |
| Support  | Powersim, Stella                                          | Examples | s 5 + NORMAL generates normally                                                                                            |
| Stella   | A % B                                                     | Examples | distributed random numbers with mean $= 5$                                                                                 |
| MODUL    | O - Remainder of Division                                 |          | and standard deviation $= 1$ .                                                                                             |
| Syntax   | MODULO(A, B)                                              |          | 20 + 3*NORMAL generates normally distributed random numbers with mean =                                                    |
| In       | A - Any number.                                           |          | 20 and standard deviation = 3.                                                                                             |
|          | B - Any number except zero.                               |          | NORMAL(20, 3) generates the same                                                                                           |
| Result   | The remainder of A / B, defined as the value R such that: |          | distribution as the one above.<br>NORMAL(5) generates normally                                                             |
|          | $\mathbf{A} = \mathbf{B} \ast \mathbf{k} + \mathbf{R}$    |          | distributed random numbers with mean = 5<br>and standard deviation = $1$ .                                                 |
|          | where k is an integer and ABS(R) < ABS(B).                | Support  | Dynamo, Powersim, Stella                                                                                                   |
| See also | MOD                                                       | Dynamo   | NORMRN(Mean, Deviation)                                                                                                    |
| Support  | Stella, Vensim                                            | Vensim   | RANDOM_NORMAL() no args!                                                                                                   |
| Stella   | MOD(A, B)                                                 | NOT - N  | egation                                                                                                                    |
| Vensim   | MODULO(A, B)                                              | Syntax   | NOT A                                                                                                                      |
| MONTE    | CARLO                                                     | In       | A - Logical value, True or False.                                                                                          |
| Syntax   | MONTECARLO(Probability[, Seed])                           | Result   | True if A is False, and False otherwise.                                                                                   |
| In       | Probability - Any number between 1 and 100.               | Example  | The following is true: NOT $1 = 0$ ; and NOT $0 = 1$ .                                                                     |
| Result   | RANDOM(0, 100, Seed) <= Probability *<br>TIMESTEP         | Note     | A related way of expressing NOT A is: 1 - A.                                                                               |
| Support  | Stella                                                    | Support  | Powersim, Stella, Vensim                                                                                                   |
|          | ot a Number                                               | Vensim   | :NOT:                                                                                                                      |
| Syntax   | NAN                                                       | NPV - Ne | et Present Value                                                                                                           |
| Result   | A value that is used to represent an invalid              | Syntax   | NPV(Payment, InterestRate)                                                                                                 |
| Result   | number.                                                   | In       | Payment - Input variable.                                                                                                  |
| Support  | Powersim                                                  |          | InterestRate - Rate per time unit.                                                                                         |
| NORMA    | L - Normal Distribution                                   | Result   | The Net Present Value                                                                                                      |
| Syntax   | NORMAL ([Mean=0[, Deviation=1[,<br>Seed]]])               | Note     | What do we do with Stella's <i>Initial</i> ?                                                                               |
|          |                                                           | Support  | Powersim, Stella                                                                                                           |
|          |                                                           | Support  | i owersiin, stena                                                                                                          |

| Stella    | NPV(Input, InterestRate[, Initial])                                                                             | Note                 |
|-----------|-----------------------------------------------------------------------------------------------------------------|----------------------|
| OR - Log  |                                                                                                                 | 11010                |
| Syntax    | A OR B                                                                                                          | ~                    |
| In        | A, B - Logical value, True or False.                                                                            | Suppo                |
| Result    | True if at least one of A or B is True, and                                                                     | Vensi                |
| Kesuit    | False otherwise.                                                                                                | POLY                 |
| Note      | A related way of expressing A OR B is: A<br>+ B - A * B.                                                        | Synta<br>In          |
| Support   | Powersim, Stella, Vensim                                                                                        |                      |
| Vensim    | :OR:                                                                                                            |                      |
| PCT - Co  | onvert Number to Percent                                                                                        | Resul                |
| Syntax    | PCT(X)                                                                                                          | Suppo                |
| In        | X - Any number.                                                                                                 | PULS                 |
| Result    | X * 100                                                                                                         | Synta                |
| Support   | Powersim, Stella                                                                                                | In                   |
| PI - Trig | onometric Constant Pi                                                                                           | m                    |
| Syntax    | PI                                                                                                              |                      |
| Result    | Value of Pi, i.e., 3.141592654                                                                                  |                      |
| Support   | Powersim, Stella                                                                                                |                      |
| PMT - P   | eriodic Payment                                                                                                 | Resul                |
| Syntax    | PMT(Rate, Periods, PresentValue,<br>FutureValue)                                                                | itesui               |
| In        | Rate - Discount rate per period.                                                                                |                      |
|           | Periods - Number of periods.                                                                                    |                      |
|           | PresentValue - Present value.                                                                                   | Note                 |
|           | FutureValue - Future value.                                                                                     |                      |
| Result    | Periodic payment.                                                                                               |                      |
| Support   | Powersim, Stella                                                                                                |                      |
| ••        | N - Poisson Distribution                                                                                        |                      |
| Syntax    | POISSON ([Mean=1[, Seed]])                                                                                      |                      |
| In        | Mean - Mean value of distribution (optional                                                                     | Suppo                |
|           | parameter with default equal to 1).                                                                             | Stella               |
|           | Seed - Initialization of random number<br>generator (optional start-up parameter<br>with random default value). | <u>PULS</u><br>Synta |
| Result    | Generates a series of random numbers<br>according to the Poisson distribution, with a<br>mean of Mean.          | In                   |

| Note                        | Stella must store POISSON(M) as<br>POISSON(M*DT)/DT and load<br>POISSON(X) as POISSON(X/DT)*DT. |  |
|-----------------------------|-------------------------------------------------------------------------------------------------|--|
| Support                     | Powersim, Stella                                                                                |  |
| Vensim                      | RANDOM_POISSON() no args!                                                                       |  |
| POLY - F                    | Polynomial                                                                                      |  |
| Syntax                      | POLY(X, A0 [, A1,, An])                                                                         |  |
| In                          | X - Any number.                                                                                 |  |
|                             | A0An - Any number (polynomial coefficients).                                                    |  |
| Result                      | The polynomial function of X, as defined by the expression:                                     |  |
| Support                     | Powersim                                                                                        |  |
| PULSE -                     | Periodic Pulse                                                                                  |  |
| Syntax                      | PULSE(Volume, First, Interval)                                                                  |  |
| In                          | Volume - Pulse volume (computational parameter).                                                |  |
|                             | First - Time of first pulse, measured in the time unit of the simulation.                       |  |
|                             | Interval - Time interval between pulses,<br>measured in the time unit of the simulation.        |  |
| Result                      | Volume/TIMESTEP or 0, depending on the current TIME and the values of                           |  |
|                             | First and Interval. A pulse occurs at the time First, and every time Interval thereafter.       |  |
| Note                        | The function depends on TIME and TIMESTEP.                                                      |  |
|                             | The relationship between PULSE and PULSEIF is the following:                                    |  |
|                             | PULSE(V, F, I) =<br>PULSEIF(TIMECYCLE(F, I), V)                                                 |  |
|                             | Dynamo's PULSE function behaves different, and is listed under TIMECYCLE.                       |  |
| Support                     | Powersim, Stella                                                                                |  |
| Stella                      | PULSE(Volume[, First, Interval])                                                                |  |
| PULSEIF - Conditional Pulse |                                                                                                 |  |
| Syntax                      | PULSEIF(Condition, Volume)                                                                      |  |
| In                          | Condition - Condition True or False<br>determining if pulse is going to occur.                  |  |
|                             | Volume - Pulse volume (computational parameter).                                                |  |

| Note      | The function depends on TIMESTEP.                                                                    |  |
|-----------|------------------------------------------------------------------------------------------------------|--|
| Result    | Zero if Condition is False and Volume/TIMESTEP otherwise.                                            |  |
| Support   | Powersim                                                                                             |  |
| PV - Pres | sent Value                                                                                           |  |
| Syntax    | PV(Rate, Periods, Payment, FutureValue)                                                              |  |
| In        | Rate - Rate per period.                                                                              |  |
|           | Periods - Number of periods.                                                                         |  |
|           | Payment - Periodic payment.                                                                          |  |
|           | FutureValue - Future value (optional parameter with default equal to zero).                          |  |
| Result    | Present value.                                                                                       |  |
| Support   | Powersim, Stella                                                                                     |  |
| RADTO     | DEG - Convert Radians to Degrees                                                                     |  |
| Syntax    | RADTODEG(Angle)                                                                                      |  |
| In        | Angle - Angle in radians.                                                                            |  |
| Result    | The equivalent of Angle measured in degrees, as defined by the equation:                             |  |
|           | RADTODEG(A) = A*180/PI                                                                               |  |
| Support   | Powersim                                                                                             |  |
| RADTO     | GRAD - Convert Radians to Gradients                                                                  |  |
| Syntax    | RADTOGRAD (Angle)                                                                                    |  |
| In        | Angle - Angle in radians.                                                                            |  |
| Result    | The equivalent of Angle measured in degrees, as defined by the equation:                             |  |
|           | RADTOGRAD(A) = A*200/PI                                                                              |  |
| Support   | Powersim                                                                                             |  |
| RAMP -    | Linear Function                                                                                      |  |
| Syntax    | RAMP(Slope, First)                                                                                   |  |
| In        | Slope - Slope of the function.                                                                       |  |
|           | First - Time to start ramp.                                                                          |  |
| Result    | 0 if TIME < First, and (Slope * TIME -<br>First) otherwise, as defined by the<br>following equation: |  |
|           | RAMP(S, F) = IF(TIME < F, 0, (TIME-F)*S)                                                             |  |
| Support   | Dynamo, Powersim, Stella                                                                             |  |
| Dynamo    | RAMP(Slope, Time)                                                                                    |  |
| Stella    | RAMP(Slope[, Time])                                                                                  |  |
|           |                                                                                                      |  |

### **RANDOM - Uniform Distribution**

| Syntax                   | RANDOM([Min=0[, Max=Min+1[, Seed]]])                                                                                                                    |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| In                       | Min - Minimum value to be returned<br>(optional parameter with default equal<br>to 0).                                                                  |  |
|                          | Max - Maximum value to be returned<br>(optional parameter with default equal<br>to Min+1).                                                              |  |
|                          | Seed - Initialization of random number<br>generator (optional start-up parameter<br>with random default value).                                         |  |
| Result                   | Uniformly distributed random number between Min and Max.                                                                                                |  |
| Examples                 | <ul> <li>5 + RANDOM returns uniformly<br/>distributed random numbers between 5 and</li> <li>6. This may also be expressed as:<br/>RANDOM(5).</li> </ul> |  |
|                          | 20 + 3*RANDOM returns uniformly<br>distributed random numbers between 20<br>and 23. This can also be expressed as:<br>RANDOM(20, 23)                    |  |
| Support:                 | Dynamo, Powersim, Stella, Vensim                                                                                                                        |  |
| Dynamo                   | Min + (NOISE()+0.5) * (Max-Min)                                                                                                                         |  |
| Stella                   | RANDOM(Min, Max[, Seed])                                                                                                                                |  |
| Vensim                   | Min + RANDOM_0_1() * (Max-Min)                                                                                                                          |  |
| ROUND                    | - Round Number to Nearest Integer                                                                                                                       |  |
| Syntax                   | ROUND(X)                                                                                                                                                |  |
| In                       | X - Any number.                                                                                                                                         |  |
| Result                   | X rounded to the nearest integer, according to the following formula:                                                                                   |  |
|                          | ROUND(X) = IF(X>=0, FLOOR(X+0.5),<br>CEIL(X-0.5))                                                                                                       |  |
| Support                  | Powersim, Stella                                                                                                                                        |  |
| SAMPLE - Periodic Sample |                                                                                                                                                         |  |
| Syntax                   | SAMPLE(Input, First, Interval[, Initial=0])                                                                                                             |  |
| In                       | Input - Any numeric expression to be sampled (computational parameter).                                                                                 |  |
|                          | First - First sampling time measured in the time unit of the simulation.                                                                                |  |
|                          | Interval - Sampling interval measured in the time unit of the simulation.                                                                               |  |

Initial - Value returned by SAMPLE until the first sampling time (optional start-up parameter with default equal to zero).

- Result SAMPLE is periodically set equal to Input and retains this value until the next sampling time. The first sample is taken at time First, and new samples are taken every Interval time units thereafter. SAMPLE returns the value of Initial until the first sample time.
- Note The function depends on TIME and on previous values of its first parameter.
- Restrict First should be set equal to STARTTIME (because of Dynamo).
- Support Dynamo, Powersim
- Dynamo SAMPLE(Input, Interval, Initial)

# **SAMPLEIF - Conditional Sample**

| Syntax                | SAMPLEIF(Condition, Input[, Initial=0])                                                                                                              |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| In                    | Condition - Conditional value True or<br>False, which determines whether a<br>sample is to be taken.                                                 |  |
|                       | Input - Any numeric expression to be sampled (computational parameter).                                                                              |  |
|                       | Initial - Value to be returned by<br>SAMPLEIF until the first time<br>Condition is True (optional start-up<br>parameter with default equal to zero). |  |
| Result                | The value of Input at the most recent<br>sampling time. Before the first sampling<br>time, the value of Initial is returned.                         |  |
| Note                  | The function depends on previous values of its second parameter.                                                                                     |  |
| Support               | Powersim, Vensim                                                                                                                                     |  |
| Vensim                | SAMPLE_IF_TRUE(Cond, Input, Initial)                                                                                                                 |  |
| SIGN - Sign of Number |                                                                                                                                                      |  |
| Syntax                | SIGN (X)                                                                                                                                             |  |
| In                    | X - Any number.                                                                                                                                      |  |
| Result                | +1 if X is positive, -1 if X is negative, and 0 otherwise.                                                                                           |  |
| Example               | The following is true:                                                                                                                               |  |
|                       | SIGN(X) = IF(X < 0, -1, IF(X > 0, 1, 0))                                                                                                             |  |
| Support               | Powersim                                                                                                                                             |  |

# SIN - Sine

| 5111 - 511 |                                                                                     |
|------------|-------------------------------------------------------------------------------------|
| Syntax     | SIN(Angle)                                                                          |
| In         | Angle - angle in radians.                                                           |
| Result     | The sine of Angle.                                                                  |
| Support    | Dynamo, Powersim, Stella, Vensim                                                    |
| SINH - H   | Iyperbolic Sine                                                                     |
| Syntax     | SINH(Value)                                                                         |
| In         | Value.                                                                              |
| Result     | The hyperbolic sine of input value.                                                 |
| Support    | Powersim, Vensim                                                                    |
| SINWAV     | /E - Periodic Sine Wave                                                             |
| Syntax     | SINWAVE(Amplitude, Period)                                                          |
| In         | Amplitude - Amplitude of the wave.                                                  |
|            | Period - Period of the wave.                                                        |
| Result     | A time-dependent sine wave, defined by the equation:                                |
|            | SINWAVE(A, P) = A * SIN(TIME/P)                                                     |
| Note       | The function depends on TIME.                                                       |
| Support    | Powersim, Stella                                                                    |
| SQRT - S   | Square Root                                                                         |
| Syntax     | SQRT(X)                                                                             |
| In         | X - Any non-negative number.                                                        |
| Result     | The square root of X.                                                               |
| Example    | The relationship between SQRT and $^$ is:<br>SQRT(X) = X $^$ 0.5                    |
| Support    | Dynamo, Powersim, Stella, Vensim                                                    |
| STARTT     | TIME - Start Time of Simulation                                                     |
| Syntax     | STARTTIME                                                                           |
| Result     | The start time of the simulation, as defined<br>in the Simulation Setup dialog box. |
| Support    | Stella, Powersim                                                                    |
| STDDEV     | 7 - Standard Deviation                                                              |
| Syntax     | STDDEV (X1, X2,Xn)                                                                  |
| In         | X1, X2,Xn - Any number.                                                             |
| Result     | The standard deviation of the arguments, as defined by:                             |
| Support    | Powersim                                                                            |
|            |                                                                                     |

| STEP - S                    | Step Function                                                                                                       | TANH -          | Hyperbolic Tangent                                                                           |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------|
| Syntax                      | STEP(Height, StepTime)                                                                                              | Syntax          | TANH(Value)                                                                                  |
| In                          | Height - Numeric expression determining                                                                             | In              | Value.                                                                                       |
|                             | step height.                                                                                                        | Result          | The hyperbolic tangent of input value.                                                       |
|                             | StepTime - Numeric expression<br>determining time of step.                                                          | Support         | Powersim, Vensim                                                                             |
| Result                      | Zero if TIME is less than StepTime, and                                                                             | TIME -          | Current Time of Simulation                                                                   |
|                             | Height otherwise.                                                                                                   | Syntax          | TIME                                                                                         |
| Support                     | Dynamo, Powersim, Vensim                                                                                            | Result          | The current time of the simulation, starting                                                 |
| STOPTI                      | ME - Stop Time of Simulation                                                                                        |                 | at the value of STARTTIME, and<br>incremented by TIMESTEP for each step of                   |
| Syntax                      | STOPTIME                                                                                                            |                 | the simulation.                                                                              |
| Result                      | The stop time of the simulation, as defined in the Simulation Setup dialog box.                                     | Note            | The function depends on TIME (obviously).                                                    |
| Support                     | Powersim                                                                                                            | Support         | Dynamo (variable) Powersim, Stella,                                                          |
| SUM - S                     | um of expressions                                                                                                   |                 | Vensim (variable)                                                                            |
| Syntax                      | SUM(X1, X2,XN)                                                                                                      | TIMECY<br>Inter | YCLE - Test for Cyclic Time or Time<br>val                                                   |
| In                          | X1, X2,XN - Any number.                                                                                             | Syntax          | TIMECYCLE(First, Interval[, Duration=0[,                                                     |
| Result                      | The sum of the arguments.                                                                                           | Syntax          | Height=1]])                                                                                  |
| Note                        | Powersim's SUM function behaves                                                                                     | In              | First - First time to check for.                                                             |
| the other tools. It is ther | different, and is not possible to represent by<br>the other tools. It is therefore not part of the<br>MIF standard. |                 | Interval - Time between intervals to check for.                                              |
| Support                     | Stella                                                                                                              |                 | Duration - Length of interval (optional parameter with default equal to zero).               |
| Stella                      | SUM(X1, X2,)                                                                                                        |                 | Height - Value to be returned when inside                                                    |
| SWITCH                      | H - First If Third is Zero                                                                                          |                 | time interval (optional parameter with                                                       |
| Syntax                      | SWITCH(P, Q, R)                                                                                                     |                 | default equal to one).                                                                       |
| In                          | P, Q, R - Any numbers.                                                                                              | Result          | Value if current simulation time is within<br>an interval from First + k * Interval to First |
| Result                      | IF( $R = 0, P, Q$ ), which is the same as IF( $R, Q, P$ ).                                                          |                 | + k * Interval + Duration, where k is a non-negative integer.                                |
| Note                        | Stella's SWITCH function behaves different, and is listed under ISGT.                                               | Note            | The function depends on TIME and TIMESTEP.                                                   |
|                             | Same as Dynamo's FIFZE.                                                                                             |                 | When testing against TIME the size of the                                                    |
|                             | Use IF instead.                                                                                                     | ~               | time step is taken into account.                                                             |
| Support                     | Dynamo                                                                                                              | Support         | Dynamo, Powersim                                                                             |
| TAN - T                     | angent                                                                                                              | Dynamo          | PULSE(Height, Duration, First, Interval)                                                     |
| Syntax                      | TAN(Angle)                                                                                                          |                 | - Test for Given Time or Time Interval                                                       |
| In                          | Angle - Angle in radians.                                                                                           | Syntax          | TIMEIS(PointInTime[, Duration=0])                                                            |
| Result                      | The tangent of Angle.                                                                                               | In              | PointInTime - Numeric expression<br>determining time to be tested for.                       |
| Support                     | Powersim, Stella, Vensim                                                                                            |                 |                                                                                              |
|                             |                                                                                                                     |                 |                                                                                              |

Duration - Duration of time interval to test for (optional parameter with default value equal to zero).

- Result True if current time lies in the interval PointInTime to PointInTime+Duration.
- Support Powersim, Vensim
- Vensim PULSE(PointInTime, Duration)

# **TIMESTEP - Time Step of Simulation**

- Syntax TIMESTEP
- Result The time step of the simulation, as defined in the Simulation Setup dialog box.
- Support Powersim, Stella
- Dynamo DT
- Stella DT

#### **TREND - Trend Extrapolation**

- TREND(Input, AveragingTime[, Initial=0]) Syntax In Input - Numeric expression to be examined over time. AveragingTime - Averaging time. Initial - Initial value of the TREND function (optional start-up parameter that defaults to zero). Result The first order exponential average change rate of Input, using the given AveragingTime. The value is expressed as the relative change in Input per time unit. The function depends on previous values of its first parameter. Support Powersim, Stella **TRUE - Logical True** Syntax TRUE Result The value one. When used in a condition, any value which Note rounds to something different from zero is regarded to be true.
- Support Powersim

#### **XOR - Exclusive Logical Or**

SyntaxA XOR BInA, B - Logical value, True or False.ResultTrue if one, and only one, of A and B is<br/>True, and False otherwise. In other words:

#### (A AND NOT B) OR (NOT A AND B)

or simply:

 $BOOL(A) \Leftrightarrow BOOL(B)$ 

Note When using > and = on logical values, it is a good practice to use BOOL on the values first. This ensures that True values are set to one. The example below illustrates this point, as the two expressions do not produce the same result:

3 = 4 - is false

BOOL(3) = BOOL(4) - is true

A related way of expressing A XOR B is: A + B - 2 \* A \* B.

Support Powersim

# 6.5 Variable symbols

The following variable symbols appear in SD diagrams:

| Variables | Powersim    | Stella             | Vensim                 |
|-----------|-------------|--------------------|------------------------|
| Level     | Level_1     | Noname 1           | Level (use any)        |
| Auxiliary | Auxiliary_1 | Noname 2           | Auxiliary<br>(use any) |
| Constant  | Constant_1  | (use<br>auxiliary) | Constant<br>(use any)  |
| Snapshot  | Level_1     | Noname 1           | <level></level>        |

Variable symbols refer to variable definitions in the equations part of the MIF file.

Vensim does not *enforce* consistency between symbol shape and variable type.

A Powersim constant is an auxiliary with a static definition (the value is independent of time).

Powersim and Stella display snapshots according to variable type. Vensim puts the name in angle brackets (<>) and *normally* omits the symbol shape.

Variable symbol attributes:

| Attribute  | Powersim | Stella     | Vensim |
|------------|----------|------------|--------|
| Line color | 16       | 2, 16, 256 | 64     |
|            |          | depending  |        |
|            |          | on HW      |        |

| Fill color               |                                         |              |       |               |                  | following:           |                 |
|--------------------------|-----------------------------------------|--------------|-------|---------------|------------------|----------------------|-----------------|
| trans-                   | X                                       | X            |       | Х             |                  | 'transparent'        |                 |
| parent                   |                                         |              |       |               |                  | 'solid'              |                 |
| solid                    |                                         |              |       | 64            | Fill color       |                      |                 |
| Line width               | fixed (1)                               | fixed (      | 1)    | free: 0->     | red              | 0255                 | 255             |
| Size                     | 4 steps                                 | fixed        |       | free          | green            | 0255                 | 255             |
| Name pos.                |                                         |              |       |               | blue             | 0255                 | 255             |
| free                     |                                         | X            |       |               | Name pos.        |                      |                 |
| outside                  |                                         |              |       |               | placement        | One of the           | 'outside'       |
| inside                   |                                         |              |       | Х             | _                | following:           |                 |
| below                    | Х                                       | х            |       | Х             |                  | 'outside'            |                 |
| above                    | Х                                       | х            |       | Х             |                  | 'inside'             |                 |
| left                     | Х                                       | x            |       | Х             | angle            | 0360                 | 270 (only used  |
| right                    | Х                                       | x            |       | Х             |                  |                      | when 'outside') |
| Name font                | fixed                                   | fixed        | 1     | free          | Name font        | see RTF              | system default  |
| Shape                    | Inteu                                   |              | *     | nee           | Shape            | One of the           | -               |
| none                     |                                         |              |       | X (const.)    |                  | following:           |                 |
| by type                  | Х                                       | X            |       | X (default)   |                  | 'none'               |                 |
| box                      | levels                                  | level        | c     | X (levels)    |                  | 'box'                |                 |
| clear box                | levels                                  | icvei        | 3     | X (levels)    |                  | 'clear box'          |                 |
| cieur vox<br>circle      | auxiliaries                             | auxilia      | rios  | X (aux.)      |                  | 'circle'             |                 |
|                          | auxiliaries                             | auxilla      | 105   | X (dux.)      |                  | 'hexagon'            |                 |
| hexagon<br>diamond       | oonstants                               |              |       | X             |                  | 'diamond'            |                 |
| ŀ                        | constants                               |              |       |               |                  | 'triangle'           |                 |
| triangle                 |                                         |              |       | X<br>X        |                  | 'up triangle'        |                 |
| up triangle              |                                         |              |       | X             | Auto shape       | 0 (off) 1 (on)       | 1 (Vensim's     |
|                          |                                         |              |       |               | <i>C</i> 1       | 0 01                 | "by type")      |
| In storing var           | riable symbols                          | s, the follo | wing  | g fields will | Current shape    | One of the           | -               |
| be defined by            | / MIF.                                  |              |       |               |                  | following:           |                 |
| Field                    | Va                                      | lues         |       | Default       |                  | 'none'<br>'box'      |                 |
| Туре                     | va 'var'                                | lues         | 'va   |               |                  | 'clear box'          |                 |
| Symbol id                | Numeri                                  | o ID of      |       | 1             |                  | 'circle'             |                 |
| Symbol id                | this syn                                |              | _     |               |                  | 'hexagon'            |                 |
|                          | (local to                               |              |       |               |                  | 'diamond'            |                 |
|                          | view)                                   | Jeach        |       |               |                  | 'triangle'           |                 |
| Visible                  | · · · · · · · · · · · · · · · · · · ·   | or 1 (yes)   | 1     |               |                  | 'up triangle'        |                 |
| Selected                 |                                         | or 1 (yes)   | 0     |               | Snapshot, ghost  | 0  (no) or  1  (yes) | 0               |
| Variable                 | Name o                                  |              | -     |               | , <u>8</u> ,     | • () • • () • •)     | ļ. *            |
| variable                 | associat                                |              | _     |               |                  |                      |                 |
|                          | variable                                |              |       |               |                  | displays how the v   |                 |
| Position                 | Variable                                | <u> </u>     |       |               | measurements are | applied to a variab  | ole symbol.     |
| acr                      | 2055 1/20*1/                            | 72 inch      | -     |               |                  |                      |                 |
|                          |                                         | 72 inch      | _     |               |                  |                      |                 |
| Size                     | 1/20-1/                                 | / 2 men      |       |               |                  |                      |                 |
|                          | dth 1/20*1/                             | 72 inch      |       |               |                  |                      |                 |
|                          | -                                       | 72 inch      | -     |               |                  |                      |                 |
| nei                      | 0                                       |              | 15    | (3/4 pt)      |                  |                      |                 |
|                          | 1////////////////////////////////////// |              | 1 1 2 | 1 1/4 1111    |                  |                      |                 |
| Line width               | 1/20*1/                                 | /2 Inch      |       | (5/4 pt)      |                  |                      |                 |
| Line width<br>Line color |                                         | 12 Inch      |       | (5/4 pt)      |                  |                      |                 |
| Line width<br>Line color | red 0255<br>een 0255                    |              | 0     | (5/4 pt)      |                  |                      |                 |

0..255

One of the

0

'transparent'

blue

Fill type

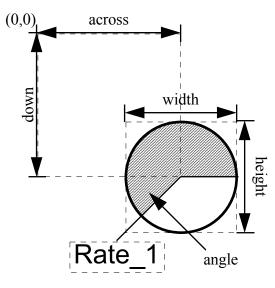



Figure 3: Variable symbol measurements

The gap between the variable shape and the name can be determined by each software. Powersim and Vensim will round the angle to the nearest multiple of 90. Powersim and Stella will force the variable name 'outside'.

# 6.6 Arrows

The following building blocks are used to make links and flows:

| Arrow           | Powersim                                            | Stella                                                    | Vensim                                                 |
|-----------------|-----------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|
| Source,<br>sink | (must be<br>part of<br>flow,<br>cannot be<br>moved) | (must be<br>part of<br>flow, can<br>be moved a<br>little) | C                                                      |
| Valve           | (part of<br>flow)                                   | T<br>(part of<br>flow)                                    | (can be<br>sized and<br>rotated in<br>steps of<br>90°) |
| Arrow           |                                                     |                                                           |                                                        |
| Shape           | determined<br>by type                               | determined<br>by type                                     | arc<br>polyline<br>p. h/v-line                         |
| Style           | fixed                                               | fixed                                                     | several                                                |
| Joint           | must be<br>part of link                             | must be<br>part of link                                   | (indep.<br>symbol of<br>type<br>"comment"<br>displayed |

|            |               |            | as an icon) |
|------------|---------------|------------|-------------|
| Link       | 4             | •          | Use arrow   |
|            | (Three        |            |             |
|            | kinds:        |            |             |
|            | normal,       |            |             |
|            | init,         |            |             |
|            | delayed)      |            |             |
| Flow-with- | use flow,     | Ì          | Use arrow,  |
| rate       | link, aux.    | 0          | valve,      |
|            |               | Noname 3   | arrow, var. |
| Flow       | $\rightarrow$ | part of    | Use arrow,  |
|            |               | flow-with- | valve,      |
|            |               | rate       | arrow       |

As can be seen from the above table, the various SD tools operate with different atomic building blocks for making links and flows.

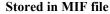
Vensim's approach is loosely connected to the traditional SD concepts of conserved (material) flows and nonconserved (information) flows. Only certain combinations of arrows, valves, comment symbols, and variable symbols represent valid SD flow diagrams in the traditional sense. The MIF format will support only such combinations.

# 6.7 Flows

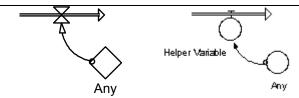
A flow is a conserving link, that is, a link that moves a mass from one place to another.

Flows must start and end in a cloud or a level variable.

The rate of mass per time unit is controlled by a variable, connected to the flow valve either through an information link or by direct association.


Below is a list of all valid flow end connections. (The valve is omitted, and will be discussed separately below.)

|                 | cloud -> flow -> cloud |
|-----------------|------------------------|
| Level_1         | cloud -> flow -> level |
| Level_1         | level -> flow -> cloud |
| Level_1 Level_2 | level -> flow -> level |


The flow rate must be controlled by a variable either directly or via an information link. Below all valid connections to a flow-valve are listed.

|       | auxiliary -> flow-valve |          |
|-------|-------------------------|----------|
| Aux   |                         | Visible  |
|       |                         | Selected |
| Const | constant -> flow-valve  | Path     |
|       | link -> flow-valve      |          |
| ~     |                         | Line wi  |
| Level | level -> flow-valve     | Line col |
|       |                         |          |

If a MIF file contains a link to flow-valve connection, Stella should automatically generate a rate variable (auxiliary) and point the link to that variable. The definition of the rate should be set equal to the name of the variable at the other end of the link. (Alternatively Stella can remove the link symbol and merge the rate variable symbol with the flow symbol. If the same variable is used to control N flows, N-1 helper variables must be created.)



Interpretation by Stella



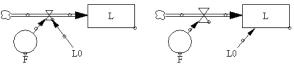
If a MIF file contains a level to flow-valve connection (discouraged), Stella should generate a rate variable (auxiliary), add a link from the level to the rate, and define the rate equal to the name of the Level.

Powersim should add a link from the level to the flow valve.



Below is a list of attributes that will be stored for a flow in the MIF file.

| Field     | Туре          | Default |
|-----------|---------------|---------|
| Туре      | 'flow'        | 'flow'  |
| Symbol id | Numeric ID of | -       |
|           | this symbol   |         |


| _ |                |                              |                  |
|---|----------------|------------------------------|------------------|
|   |                | (local to each               |                  |
|   |                | view)                        |                  |
|   | Visible        | 0 (no) or 1 (yes)            | 1                |
|   | Selected       | 0 (no) or 1 (yes)            | 0                |
|   | Path           | p followed by                | -                |
|   |                | series of the                |                  |
|   |                | following:                   |                  |
|   |                | line p                       |                  |
| - |                | arc <i>p1,p2</i>             |                  |
|   |                | <b>curve</b> <i>p1,p2,p3</i> |                  |
|   |                | (see page 33)                |                  |
|   | Line width     | 1/20*1/72 inch               | 15 (3/4 pt)      |
|   | Line color     |                              |                  |
|   | red            | 0255                         | 0                |
|   | green          | 0255                         | 0                |
|   | blue           | 0255                         | 0                |
|   | Source         | Numeric ID of                | -1 (interpret as |
|   |                | source symbol                | cloud)           |
|   | Destination    | Numeric ID of                | -1 (interpret as |
|   |                | destination                  | cloud)           |
|   |                | symbol                       |                  |
|   | Rate           | Numeric ID of                | -                |
|   |                | symbol                       |                  |
|   |                | (variable or                 |                  |
|   |                | link) controlling            |                  |
|   |                | valve                        |                  |
| _ | Valve Position |                              |                  |
|   | across         | 1/20*1/72 inch               | _                |
|   | down           | 1/20*1/72 inch               | -                |
|   | A 1° / 1 °/1 / | 11 1 1                       | 1                |

A line style with two parallel lines is assumed.

Cloud symbols and valve symbols should not be stored in the MIF file.

Vensim can have several links (arrows) pointing at a valve. A MIF compatible Vensim model should not allow for more than one link pointing to a valve.

As an example, some Vensim model are drawn with both the flow rate and the level initialization pointing at the valve symbol A MIF compatible Vensim model would point the rate at the valve and the initialization at the level.



a) Not MIF compatible

b) MIF compatible

When loading a model as displayed in alternative b, Stella would simply ignore the link from L0 to L. The rate F can be merged (moved) into the flow by Stella, as Stella does not support links-to-flow connections.

### 6.8 Links

A link is non-conserving, that is, mass will not be moved through the link.

Below is a list of valid sources of a link. Several links can depart from the same symbol.

| Aux   | A | auxiliary        | ]   |
|-------|---|------------------|-----|
| Const | 4 | constant         | ~ ` |
| Level | 4 | level            |     |
| 0     | X | joint (junction) | ]   |

Below are the valid destinations of a link. Several links can point at the same symbol. Several links to a joint (Vensim) is discouraged.

#### (Stella does not seem to support joints.)

| Aux        | auxiliary             |
|------------|-----------------------|
| σ<br>Const | constant <sup>3</sup> |
| σ´´`Level  | level <sup>4</sup>    |
| 00         | joint <sup>5</sup>    |

Below is a list of attributes that will be stored for a link in the MIF file.

| Field     | Туре                                                    | Default |
|-----------|---------------------------------------------------------|---------|
| Туре      | 'link'                                                  | 'link'  |
| Symbol id | Numeric ID of<br>this symbol<br>(local to each<br>view) | _       |
| Visible   | 0 (no) or 1 (yes)                                       | 1       |

<sup>3</sup>The source (e.g., A) of a link to a constant is used in a constant expressions, e.g. INIT(A). Powersim displays initialization links using dotted lines. <sup>4</sup>Stella does not draw links to levels. Hence, links to levels should be skipped by Stella.

<sup>5</sup>Vensim supports several links pointing at the same joint. Stella and Powersim should make every link except the first point directly to the variables pointed at by the link(s) leaving the joint.

|   | Selected    | 0 (no) or 1 (yes)            | 0           |
|---|-------------|------------------------------|-------------|
|   | Path        | <i>p</i> followed by         | _           |
|   |             | series of the                |             |
|   |             | following:                   |             |
|   |             | line p                       |             |
|   |             | arc <i>p1,p2</i>             |             |
|   |             | <b>curve</b> <i>p1,p2,p3</i> |             |
|   | Line width  | 1/20*1/72 inch               | 15 (3/4 pt) |
|   | Line color  |                              |             |
| _ | red         | 0255                         | 0           |
|   | green       | 0255                         | 0           |
|   | blue        | 0255                         | 0           |
|   | Source      | Numeric ID of                | -           |
|   |             | source symbol                |             |
|   |             | (variable or                 |             |
|   |             | joint)                       |             |
|   | Destination | Numeric ID of                | -           |
|   |             | destination                  |             |
|   |             | symbol                       |             |
|   |             | (variable or                 |             |
|   |             | joint)                       |             |

The line style is assumed to be a solid line. Powersim will display links to levels as dotted lines.

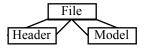
# 6.8.1 Delayed links

Powersim has some functions that accept delayed parameters. Links via delayed parameters can be used in a circle (feedback loop). A delayed link symbol is *required* for delayed parameters. Vensim and Stella should use normal links instead. Replacing delayed links with normal links can result in double links between two symbols. In that case the delayed link symbol should be dropped by Stella and Vensim.

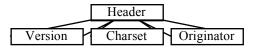
As Stella does not allow for circles, even when delay functions are used, delayed links should not be used to create circles. Use explicit flow-to-level combinations instead.

#### 6.9 Reports

The following report objects are shared by the SD packages.


|                          | Powersim                      | Stella    | Vensim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|-------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time graph<br>(in place) | 100<br>40<br>0 40 100<br>TIME | (also has | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (icon)                   | N/A                           | icon)     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (window)                 | N/A                           | Graph 1   | Image: Craph for addb         Graph for addb           100         Image: Craph for addb           0         Image: Craph for addb           Image: Craph for addb         Image: Craph for addb           Image: Craph f |

|                          |     | (also has<br>icon) |     | а         |
|--------------------------|-----|--------------------|-----|-----------|
| Time table<br>(in place) | Х   | X                  | N/A | aN        |
| Time table (icon)        | N/A | X                  | N/A | a?<br>a+  |
| Time table<br>(window)   | N/A | X                  | Х   | a*<br>a b |


(incomplete...)

# 7. Structure of MIF files

A MIF file is organized as displayed below.



The header contains information about the MIF file version, character set and originating software, as displayed below.



All models created with one version of a software will contain the same information in the MIF header. Information about the model itself is stored in the Model part. This part contains global information about the model (title, subject, author, etc.), settings for options of the software tool, model equations, and graphical views into the model.

| Mo                  | odel            |
|---------------------|-----------------|
| Information Options | Equations Views |
|                     | Windows         |

The equations part contains a list of variable definitions. In future versions of the standard, index variables (for variables) and array dimensions will also be included here.

Views can be graphical or textual. A graphical view can contain objects that are variables, flows, links, graphs, tables, etc. A list of one or more windows is used to display views. A window can display one view at the time.

# 8. Language for syntax definition

In the following, the MIF syntax is described using a syntax based on the Backus-Naur Form:

| Syntax        | Meaning        | Control Word | Maaning                  |
|---------------|----------------|--------------|--------------------------|
| 'c'           | A literal      | mif          | Meaning                  |
| <text></text> | A nonterminal. |              | Version of MIF file (0). |

The terminal control word a, without a parameter.

- The terminal control word a, with a parameter N.
- Item a is optional.
- One or more repetitions of item a.
- Zero or more repetitions of item a.
- a b Item a followed by item b.
- a | b Item a or item b.
- a & b Item a and/or item b, in any order.

# 9. Syntax definition of MIF

The MIF standard is partially based on the Rich Text Format (RTF) standard, developed by Microsoft (1994). MIF is, however, not compatible with RTF, in any way.

Information is grouped in the MIF file using curly braces ({}).

Each group of data starts with a tag, which is a name preceded by a backslash, e.g. like this **\info**.

Identifiers are used to name variables and functions, etc. Identifiers can contain arbitrary characters (e.g., spaces and foreign language characters). Characters outside the range 0-9, a-z, A-Z must be quoted like this:

\a The character a.

Characters with ordinal numbers greater than 127 must be written using escape sequences, like this:

\'hh A hexadecimal value, based on the specified character set (may be used to identify 8-bit values).

Colors are represented as rgb (red, green, blue) values, like this:

<rgb> \rN & \gN & \bN

#### 9.1 The file group

At the top level a MIF file can be defined like this:

<file> '{' <header> <model> '}'

# 9.2 The header group

The header contains global information about the file, including file version.

| <header> \<br/><charset> \</charset></header> | <b>mifN</b> <charset> <originator><br/><b>ansi</b>   \<b>mac</b></originator></charset> |
|-----------------------------------------------|-----------------------------------------------------------------------------------------|
| <originator></originator>                     | `{ <sup>`</sup> \ <b>origN</b> ( 'dynamo'   'stella'  <br>'powersim'   'vensim' ) '}'   |
| Control Word                                  | Maaning                                                                                 |

| ansi | ANSI character set, i.e., MS-<br>Windows (default)    |
|------|-------------------------------------------------------|
| mac  | Macintosh character set                               |
| orig | Originating software. Numeric argument holds software |

Future versions of the MIF format may include identification for categories of models, e.g. **\array** for array models and **\discrete** for models with discrete variable types. Presence of diagram information is taken from the Views section of the Model part.

version times 1000.

Header example, Powersim model version 2.01 for MS-Windows:

\mif0\ansi{\orig2010 powersim}

### 9.3 The model group

A model will have some global information in addition to the set of objects from which it is composed. Following the RTF standard, we define a model like this:

| <equations< th=""><th><info>? <options>* <equations>?<br/><view>* <window>*<br/>&gt; { \equations <equation>* }</equation></window></view></equations></options></info></th></equations<> | <info>? <options>* <equations>?<br/><view>* <window>*<br/>&gt; { \equations <equation>* }</equation></window></view></equations></options></info> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| <view></view>                                                                                                                                                                             | { \view <viewtype> <viewsize>?<br/><viewopt>* <symbol>* }</symbol></viewopt></viewsize></viewtype>                                                |
| <window></window>                                                                                                                                                                         | '{' \ <b>window</b> <winsize> <winopt>*<br/>'}'</winopt></winsize>                                                                                |
| <b>Control Word</b>                                                                                                                                                                       | Meaning                                                                                                                                           |
| equations                                                                                                                                                                                 | Group holding the equations of the model.                                                                                                         |
| view                                                                                                                                                                                      | The model can have one or more views.                                                                                                             |
| window                                                                                                                                                                                    | The model can have one or<br>more windows. Each window<br>displays a view.                                                                        |

### 9.4 The information group

This group contains title, subject, author, etc.<sup>6</sup>

| `{` \ <b>info</b> `{` \ <b>title</b> <string> `}` &amp;<br/>`{` \<b>subject</b> <string> '}` &amp;</string></string> |
|----------------------------------------------------------------------------------------------------------------------|
| '{' \author <string> '}' &amp;</string>                                                                              |
| '{' \ <b>operator</b> <string> '}' &amp;</string>                                                                    |
| `{` \ <b>keywords</b> <string> `}` &amp;</string>                                                                    |
| `{` \ <b>comment</b> <string> `}` &amp;</string>                                                                     |
| `{` \ <b>version</b> <string> '}' &amp;</string>                                                                     |
|                                                                                                                      |

<sup>6</sup>The definition can be taken directly from the RTF standard.

|               | `{` \ <b>doccomm</b> <string> `}` &amp;<br/>`{` \<b>creatim</b> <time> `}` &amp;<br/>`{` \<b>revtim</b> <time> '}` &amp;</time></time></string> |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|               | '{' \ <b>printtim</b> <time> '}' &amp;<br/>'{' \<b>buptim</b> <time> '}' &amp;</time></time>                                                    |
|               | '{' \edminsN '}' & \logpixxN &<br>\logpixyN '}'                                                                                                 |
| <time></time> | \yrN \moN \hrN \minN                                                                                                                            |

| <b>Control Word</b> | Meaning                                                       |
|---------------------|---------------------------------------------------------------|
| title               | Title of document                                             |
| subject             | Subject of document                                           |
| author              | Author of document                                            |
| operator            | Person who last made changes to document                      |
| keywords            | Selected key words for document                               |
| comment             | Comments; text is ignored                                     |
| version             | Version number of document                                    |
| doccomm             | Comments displayed in Edit<br>Summary Info dialog box         |
| creatim             | Creation time                                                 |
| revtim              | Revision time                                                 |
| printtim            | Last print time                                               |
| buptim              | Backup time                                                   |
| edmins              | Total editing time in minutes                                 |
| yr                  | Year                                                          |
| mo                  | Month                                                         |
| hr                  | Hour                                                          |
| min                 | Minute                                                        |
| logpixx<br>logpixy  | Screen resolution when<br>document saved (pixels per<br>inch) |

An example of the information group follows:

{\info{\title The coffee cup} {\author
Arne-Helge Byrknes}}

# 9.5 Model options group

This group will hold global options for the document, including editing options, viewing options and page information. The group will normally contain native information (tags starting with an underscore (\_)).

<options> <times> & <integr> & <pause> &
 & \noedit & \nosave &
 \nextlevN & \nextauxN &

| \nextconstN & \nextrateN &<br><printopt> &amp;</printopt> |
|-----------------------------------------------------------|
| \paperwN & \paperhN &                                     |
| \margIN & \margrN &                                       |
| \margtN & \margbN &                                       |
| \facignp & \gutterN &                                     |
| \headeryN & \footeryN &                                   |
| '{' \ <b>header</b> <string> '}' &amp;</string>           |
| '{' \ <b>footer</b> <string> '}'</string>                 |

The user cannot edit the file,

Meaning

used for games.

Facing pages (off)

binding.

header.

to footer.

This group specifies time horizon and time step of the

Extra margin space to allow for

Distance from top of page to

Distance from bottom of page

Header text, can contain field codes for page numbering, etc.

Footer text, can contain field codes for page numbering, etc.

**Control Word** 

noedit

nosave

nextlev

nextaux

nextrate

paperw

paperh

margl

margr

margt

margb

facingp

gutter

headery

footery

header

footer

9.6 Times group

nextconst

| from   | Start time of simulation.                       |
|--------|-------------------------------------------------|
| to     | Stop time of simulation.                        |
| dt     | Time step of simulation.                        |
| unit   | Time unit of simulation.                        |
| runcnt | Number of runs (1) to be simulated in sequence. |

(Here number of runs can also be included if greater than one. The same goes for cyclic time.

### 9.7 Integration group

The integration method is specified by this group.

| The user cannot save the file, used for libraries.                | <integr> {</integr> | \integr \orderN & \varstep &<br>\abserrN & \relerrN } |
|-------------------------------------------------------------------|---------------------|-------------------------------------------------------|
| Number of next level (stock),<br>auxiliary (converter), constant, | <b>Control Word</b> | Meaning                                               |
| rate variable when generating                                     | order               | Order of integration method                           |
| automatic names, e.g., Level_1,                                   | varstep             | Variable step integration (off)                       |
| Level_2, etc.                                                     | abserr              | Absolute error limit                                  |
| Paper width in twips                                              | relerr              | Relative error limit                                  |
| Paper height in twips                                             | The following integ | gration methods are supported:                        |
| Left margin in twips                                              | Integration metho   |                                                       |
| Right margin in twips                                             | Euler               | \order1                                               |
| Top margin in twips                                               | Runge Kutta 2       | \order2                                               |
| Bottom margin in twips                                            | Runge Kutta 4       | \order4                                               |
| Facing pages (off)                                                | Dense Verthe Arrest | -1-1                                                  |

Runge Kutta 4 variable step \order4 \varstep

Absolute and relative error limits may be specified for variable step integration.

# 9.8 Pause group

Control Word

This group specifies automatic pauses during the simulation.

| <pause></pause> | '{' \pause '{' \firstsN & \everysN    |
|-----------------|---------------------------------------|
|                 | & \ <b>use</b> '}' &                  |
|                 | '{' \firsttN & \everytN & \use '} '}' |

If omitted, no automatic pause will occur. A pause can be specified as intervals in terms of the time unit or the time step. The use tag determines which pause specification is active.

| simulation.           | -                                            | <b>Control Word</b> | Meaning                           |
|-----------------------|----------------------------------------------|---------------------|-----------------------------------|
| <times></times>       | '{' \times \fromN & \toN & \dtN &            | firsts              | Time of first pause in steps      |
| stimounits            | \ <b>runcntN</b> & <timeunit> '}'</timeunit> | firstt              | Time of first pause in time units |
| <li>lineunit&gt;</li> | '{' \ <b>unit</b> <ident> '}'</ident>        | everys              | Length of interval between        |
| <b>Control Word</b>   | Meaning                                      |                     | pauses in steps                   |

Side 29 of 35

everyt Length of interval between pause in time units

**use** Use the pause specification if the group that holds this control word.

The following example will pause the simulation every time unit.

{\pause{\firsts0\everys10}{\firstt0\ever
yt1\use}}

This example will pause the simulation every ten time steps.

```
{\pause{\firsts0\everys10\use
}{\firstt0\everyt1}}
```

# 9.9 The equations group

Each equation is defined by its own group. Only variable equations need to be specified. Unit of measure definitions can also be included.

<equation> <unitdef>\* <vardef>\*

#### 9.10 Unit equations

Units of measure are used to document variables and optionally also to verify unit consistency for variable definitions.

| <unitdef></unitdef>   | '{' \ <b>unit</b> '{' \ <b>name</b> <identifier> '}' &amp;</identifier> |
|-----------------------|-------------------------------------------------------------------------|
|                       | '{' \ <b>def</b> <unitexpr> '}' &amp;</unitexpr>                        |
|                       | '{' \ <b>doc</b> <string> '}' '}'</string>                              |
| <unitexpr></unitexpr> | <unitfact>  </unitfact>                                                 |
|                       | <unitfact> '*' <unitfact>  </unitfact></unitfact>                       |
|                       | <unitfact> '/' <unitfact>  </unitfact></unitfact>                       |
|                       | <unitfact> '^' <number></number></unitfact>                             |
| <unitfact></unitfact> | <number>  </number>                                                     |
|                       | <name>  </name>                                                         |
|                       | '(' <unitexpr> ')'</unitexpr>                                           |

A unit expression is composed from unit names and numbers that can be multiplied, divided or raised to a power. Examples include:

```
m/s
people/week
m/s^2
```

#### 9.11 Variable equations

A variable must have a name. Unless undefined, the variable must also have a definition. The variable can be documented, and a value range (scale) can be given. An optional unit of measure can also be present. Future versions of the MIF format will include a dimensions group for specifying array variables.

<vardef> '{' \var '{' \name <ident> '}' &

'{' \dim <dimensions> '}' & '{ \def <expression> '}' & '{ \unit <unitexpr> '}' & '{ \doc <text> '}' & '{ \scale \minN & \maxN & \loN & \hiN & \fixmax & \fixmin & \yminN & \ymaxN '}' '}

| Control Word | Meaning                                                                                                      |
|--------------|--------------------------------------------------------------------------------------------------------------|
| var          | Identifies a variable definition group.                                                                      |
| name         | Name of variable.                                                                                            |
| dim          | Dimensions of variable,<br>reserved for future array<br>expansion.                                           |
| def          | Definition of variable.                                                                                      |
| unit         | Optional unit of measure.                                                                                    |
| doc          | Documentation of variable.                                                                                   |
| scale        | Scale group.                                                                                                 |
| min<br>max   | Minimum and maximum value of variable.                                                                       |
| lo<br>hi     | Lowest and highest value of variable during latest simulation.                                               |
| fixmin       | If present, use <b>min</b> value as scaling. Otherwise use <b>lo</b> value.                                  |
| fixmax       | If present, use <b>max</b> value as scaling. Otherwise use <b>hi</b> value.                                  |
| ymin<br>ymax | Minimum and maximum scale<br>of graph function's y-axis.<br>(Powersim: Edit Graph; Stella:<br>Become Graph). |

The syntax of the right hand side of a variable definition is defined below:

| <expr></expr>       | <factor>  </factor>                                 |
|---------------------|-----------------------------------------------------|
|                     | <prefix op=""> <expr>  </expr></prefix>             |
|                     | <expr> <infix op=""> <expr>  </expr></infix></expr> |
|                     | <expr> <postfix op=""></postfix></expr>             |
| <factor></factor>   | <li>literal&gt;  </li>                              |
|                     | <varref>  </varref>                                 |
|                     | <funcall>  </funcall>                               |
|                     | '(' <expr> ')'</expr>                               |
| <literal></literal> | <decimal number=""></decimal>                       |
| <varref></varref>   | <ident></ident>                                     |
| <funcall></funcall> | <ident> <parlist>?</parlist></ident>                |
| <parlist></parlist> | '(' <expr> (',' <expr> )* ')'</expr></expr>         |

Unary operators:

| Oper. | Prec. | Pos.    | Purpose     |
|-------|-------|---------|-------------|
| +     | 8     | prefix  | Unary plus  |
| -     | 8     | prefix  | Unary minus |
| NOT   | 8     | prefix  | Negation    |
| !     | 8     | postfix | Factorial   |
| %     | 8     | postfix | Percent     |

Binary operators:

| Oper.      | Prec. | Assoc. | Purpose                   |
|------------|-------|--------|---------------------------|
| ^          | 7     | right  | Raised to a power         |
| *          | 6     | left   | Multiplication            |
| /          | 6     | left   | Division                  |
| MOD        | 6     | left   | Remainder of division     |
| DIVZ0      | 6     | left   | Division, zero if by zero |
| DIVZ1      | 6     | left   | Division, one if by zero  |
| +          | 5     | left   | Plus                      |
| -          | 5     | left   | Minus                     |
| <          | 4     | left   | Less than                 |
| <=         | 4     | left   | Less than or equal to     |
| >          | 4     | left   | Greater than              |
| >=         | 4     | left   | Greater than or equal to  |
| =          | 3     | left   | Equal to                  |
| $\diamond$ | 3     | left   | Not equal to              |
| AND        | 2     | left   | Logical and               |
| XOR        | 1     | left   | Logical exclusive or      |
| OR         | 1     | left   | Logical or                |

In order to avoid ambiguity, parenthesis should be used when making expressions involving several different operators in a row.

Example:  $((A + B) * C) \mod 10$ 

#### 9.11.1 Comments

Comments that are included in expressions will be regarded as white space (space, tab, line feed). Comments should be enclosed in apostrophes (").

#### 9.11.2 Unit of measure

Literals can be followed by a unit of measure specification, which is a text string enclosed inside curly braces.

Example: Speed + 10 {m/s}

#### 9.12 The view group

A view can either be a text view (equations) or a diagram view (symbols). Each view is controlled by a set of options, and can contain a set of symbols (variable symbols, time graphs, bars, pictures, etc.).

| Control Word    | Meaning                                                                                                                                                                                                                      |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| view            | Identifies a view group                                                                                                                                                                                                      |
| text            | The view is a text view                                                                                                                                                                                                      |
| diagram         | The view is a accumulator flow diagram                                                                                                                                                                                       |
| width<br>height | Width and height of view area<br>in twips. The values are<br>optional, and can be obtained<br>by examining the contents of<br>the view.                                                                                      |
| scaleonpause    | If present redisplay reports with<br>scaleable axis whenever the<br>simulation is paused, after<br>having updated <b>lo</b> and <b>hi</b> values<br>for variable values. See <i>The</i><br><i>equations group</i> , page 30. |
| noautoreports   | If present, automatic reports in connection to variable symbols are disabled.                                                                                                                                                |

#### 9.13 The view options

<viewopt> '{' \title <string> '}' & '{' \fill <rgb> '}' & \showpages & \showrulers & \nohscroll & \novscroll & <font> & <iconsheet> & <diaopt>\* | <eqopt>\*

| <b>Control Word</b>     | Meaning                       |
|-------------------------|-------------------------------|
| title                   | Title of view.                |
| fill                    | Color of background.          |
| showpages               | Show page borders (off)       |
| showrulers              | Show rulers (off).            |
| nohscroll               | No horizontal scroll bar (on) |
| novscroll               | Ho vertical scroll bar (on)   |
| <iconsheet></iconsheet> | Global icon table, see below. |

In defining symbols it is possible to refer to icons by index. The **iconsheet** holds information about the icons. (Used by Vensim.)

| <iconsheet< th=""><th><pre>t&gt; `{` \iconsheetN <icon>* '}'</icon></pre></th></iconsheet<> | <pre>t&gt; `{` \iconsheetN <icon>* '}'</icon></pre> |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------|
| <icon></icon>                                                                               | `{` \ <b>icon</b> <file>? <data> `}`</data></file>  |
| <file></file>                                                                               | '{'                                                 |
| <data></data>                                                                               | '{' \ <b>data</b> <hexstring> '}'</hexstring>       |

| <b>Control Word</b> | Meaning                    |       |
|---------------------|----------------------------|-------|
| iconsheet           | Table with N icons.        |       |
| icon                | Definition of an icon.     | showf |
| file                | Name of file holding icon. |       |
| data                | Data defining icon.        |       |
|                     | -                          | zoom  |

#### 9.14 Diagram view options

Diagram and equations views have different options.

| <diaopt></diaopt> | · •                                                   |
|-------------------|-------------------------------------------------------|
|                   | & \distyN & \angleN '}' &                             |
|                   | '{' \ <b>symdflt</b> <varsym> &amp;</varsym>          |
|                   | <linksym> &amp; <flowsym> &amp;</flowsym></linksym>   |
|                   | <reportsym> '}' &amp;</reportsym>                     |
|                   | '{' \ <b>symhide</b> <varsym>* &amp;</varsym>         |
|                   | <linksym>* &amp; <flowsym>* &amp;</flowsym></linksym> |
|                   | <reportsym>* '}' &amp;</reportsym>                    |
|                   | '{' \ <b>autoreports</b> <varsym>* &amp;</varsym>     |
|                   | <linksym>* &amp; <flowsym>* &amp;</flowsym></linksym> |
|                   | <reportsym>* '}' &amp;</reportsym>                    |
|                   | \showundef & \showfun &                               |
|                   | \zoomN                                                |
|                   |                                                       |

| <b>Control Word</b> | Meaning                                                                                                                             |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| grid                | Grid settings group.                                                                                                                |
| snap                | If present, snap to grid.                                                                                                           |
| unit                | Unit of measure used for <b>distx</b><br>and <b>disty</b> , 0=pixel, 1=cm,<br>2=inch, 3=point (1/72 inch).                          |
| distx<br>disty      | Distance between grid lines, measured according to <b>unit</b> .                                                                    |
| angle               | Angular grid, measured in degrees. Zero means that angular grid off.                                                                |
| symdflt             | Default attributes (e.g., colour)<br>of newly created symbols. A<br>prototype of each symbol type<br>can be listed here.            |
| symhide             | Group containing symbol types<br>that should be hidden. As an<br>example, a if a link symbol is<br>present in this group, all links |

| should | be | hidden. |
|--------|----|---------|
|--------|----|---------|

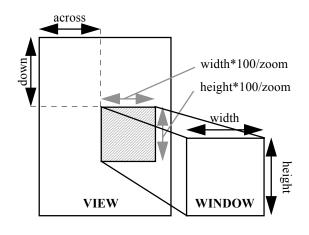
| autoreports | Group containing prototypes<br>for symbol types with auto<br>report settings to be applied on<br>a global basis. Any other<br>settings are ignored. |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| showundef   | Indicate if a variable is<br>undefined, e.g., by adding a<br>question mark.                                                                         |
| showfun     | Indicate use special functions<br>(table lookup, stochastic, time<br>dependent, etc.) inside variable<br>symbols.                                   |
| zoom        | Percent zooming (100)                                                                                                                               |

#### 9.15 Equations view options

| <eqopt></eqopt> | `{` \ <b>varhide</b> 'def' & 'doc' & 'dim' & |
|-----------------|----------------------------------------------|
|                 | 'scale' & 'unit' '}' &                       |
|                 | \showtimes & \icon                           |
|                 | sort equations by                            |

| <b>Control Word</b> | Meaning                                                                                         |
|---------------------|-------------------------------------------------------------------------------------------------|
| varhide             | List of parts of a variable<br>definition that shall not be<br>displayed in the equations view. |
| showtimes           | Add time specification to the equations view.                                                   |
| icon                | Use icons instead of text to label equations.                                                   |

Other options: Print size (%). Printer selection. Not defined yet.


### 9.16 The window group

A window is used to display a view. It is possible to switch views. Therefore each window can hold options for many views. However, only one view is current, i.e., being displayed.

| <window></window>      | <pre>'{' \window \widthN \heightN &amp;     \maximize &amp; \minimize     <winopt>* '}' '{' \viewN \show? \downN     \acrossN <viewopt>* '}'</viewopt></winopt></pre> |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                                                                                                                                       |
| Control Word           | Meaning                                                                                                                                                               |
| Control Word<br>window | Meaning<br>Identifies window group.                                                                                                                                   |

| maximize                                    | If present, the window is maximized.                                                                                                                   | invisible                                                                                               | If present, the symbol is to be hidden.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| minimize                                    | If present, the window is<br>minimized. (Should position of<br>icon be specified here?)                                                                | selected                                                                                                | If present, the symbol is part of the current selection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| view                                        | Options for given view number, counting from one.                                                                                                      | Graphically, symbols have either closed or open<br>shapes. Variable symbols and reports are examples of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| show                                        | If present, this view is currently<br>displayed in the window. Only<br>one <b>show</b> control word should<br>be present per window.                   | Shapes can be explic                                                                                    | <pre>links and flows are open shapes.<br/>citly described using paths.<br/>\path <pt> <pt> ( <lineseg>  </lineseg></pt></pt></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| across<br>down                              | Position of upper, left hand<br>corner of window relative to<br>view – measured in view<br>coordinates. These values<br>determine scrolling of window. | <arc> ``{`<br/><polyline> `{`</polyline></arc>                                                          | <pre>\alcomple = polyine &gt; polyine &gt;</pre> |
| The mapping from view coordinates to window |                                                                                                                                                        |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

The mapping from view coordinates to window coordinates is depicted below.



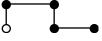
# 9.17 The symbols

Symbols are identified by a type and a numeric identifier. Symbols can be visible or invisible; and part of the current selection or not.

Remaining attributes depend on the type.

<symbol> '{' \sym \idN \invisible & \selected <varattr> | <linkattr> | <flowattr> | <jointattr> | <repattr> '}'

(Should we add clouds, valves, comments?)


| <b>Control Word</b> | Meaning                                          |
|---------------------|--------------------------------------------------|
| sym                 | This is a symbol group.                          |
| id                  | Numeric identifier that is unique for this view. |

| <b>Control Word</b> | Meaning                                                                                                                                                                                                     |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| path                | Path describing flow. The two<br>points identify the starting point<br>of the path. The path primitives<br>below display how a path is<br>extended from its current point<br>(displayed as an open circle). |
| (path) arc          | Arc segment of path. The<br>current point is taken as the<br>starting point. A point on the<br>arc is given together with the<br>ending point.                                                              |
|                     | 0-02                                                                                                                                                                                                        |
| (path) bezier       | Curve segment of path. Two<br>handles and the ending point<br>are given.                                                                                                                                    |
|                     | ••••                                                                                                                                                                                                        |
| (path) line         | Line segment of path. The ending point is given.                                                                                                                                                            |
|                     |                                                                                                                                                                                                             |



(path) polyline

Polyline segment of path. Bending points and ending point are given.



Drawing attributes for closed shapes are given below.

| <cshape></cshape> | '{' \cshape<br>'{' \line \tr \wN & <rgb> '}' &amp;<br/>'{' \fill \tr &amp; <rgb> '}' &amp;<br/>\auto &amp; <path> &amp;<br/>( \none   \box   \circle  <br/>\hexagon   \diamond  <br/>\triangle   \uptriangle  <br/><icon>   <bitmap>  <br/><metafile> ) '}'</metafile></bitmap></icon></path></rgb></rgb> |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | <pre>{' \iconN <file> &amp; <data> '}' '{' \bitmap <file> &amp; <data> '}' '{' \bitmap <file> &amp; <data> '}' '{' \metafile <file> &amp; <data> '}' '{' \metafile <string> '}' '{' \data <hexstring> '}'</hexstring></string></data></file></data></file></data></file></data></file></pre>              |
| Control Word      | Meaning                                                                                                                                                                                                                                                                                                   |

| Control Word                             | Meaning                                                                                                                                                       |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (line) tr                                | If present, no outline is drawn.                                                                                                                              |
| (line) w                                 | Line width of outline in twips.                                                                                                                               |
| (line) <rgb></rgb>                       | Line color.                                                                                                                                                   |
| (fill) tr                                | If present the symbol is transparent, i.e., without fill color.                                                                                               |
| (fill) <rgb></rgb>                       | Fill color.                                                                                                                                                   |
| auto                                     | Shape is determined by symbol type (default).                                                                                                                 |
| <path></path>                            | Shape is given by explicit path.<br>The last point of the path is<br>connected to the first using a<br>straight line closing the path.                        |
| none<br>box                              | Shape is given predefined shape.                                                                                                                              |
| circle<br>hexagon<br>diamond<br>triangle | A clear box is represented as a box with a <b>line</b> that is transparent ( <b>tr</b> ).                                                                     |
| uptriangle<br>icon<br>bitmap<br>metafile | The optional argument to <b>icon</b> is an index into a global icon lookup table. If <i>N</i> is omitted, the icon <b>file</b> or <b>data</b> should be given |
| file                                     | Name of file holding icon, bitmap, or metafile.                                                                                                               |
| data                                     | Data for current icon, bitmap,<br>metafile. Will be used if <b>file</b> is<br>not found when opening the<br>document.                                         |

Drawing attributes for open shapes are given below.

<oshape> '{' \oshape '{' \line \wN & <rgb> '}' & <path> '}'

| <b>Control Word</b> | Meaning                                        |  |
|---------------------|------------------------------------------------|--|
| (line) w            | Line width of outline in twips.                |  |
| (line) <rgb></rgb>  | Line color.                                    |  |
| <path></path>       | Path describing shape. The path is not closed. |  |

# 9.18 Variable attributes

Automatic reports (animation) can be set to graph, number and slider. See *Diagram view options*, page 32.

| <varattr></varattr> | <pre>'{' \type 'var' '}' &amp; '{' \subtype ( 'level'   'aux'       'const' ) '}' &amp; \rate &amp; \snapshot &amp; \acrossN &amp;     \downN &amp; \widthN &amp;     \heightN &amp; \autograph &amp;     \autonum &amp; \autoslider &amp;     <cshape> &amp; '{' \name <ident> '}' &amp; '{' \nampos \inside &amp; \angleN?     <font> '}' '}'</font></ident></cshape></pre> |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| trol Word           | Meaning                                                                                                                                                                                                                                                                                                                                                                       |
| <b>`</b>            | Symbol type is variable                                                                                                                                                                                                                                                                                                                                                       |

| <b>Control Word</b>                | Meaning                                                                          |
|------------------------------------|----------------------------------------------------------------------------------|
| type                               | Symbol type is variable.                                                         |
| subtype                            | Kind of variable.                                                                |
| rate                               | If present, the variable is used<br>as a rate, i.e., controlling a<br>flow.      |
| snapshot                           | If present the symbol is a snapshot (alias, ghost, shadow).                      |
| across<br>down                     | Position of center of symbol measured in twips.                                  |
| width<br>height                    | Size of symbol bounding box,<br>excluding name that can be<br>outside of symbol. |
| autograph<br>autonum<br>autoslider | Display a graph, number or slider representing the symbol's current value.       |
| <cshape></cshape>                  | Shape of symbol.                                                                 |
| name                               | Name of variable associated with symbol.                                         |
| (nampos) inside                    | If present the name is placed inside of the symbol.                              |
| (nampos) angle                     | Angle from center of symbol to center of name text measured in                   |

degrees. See Figure 3, page 24.

### 9.19 Flow attributes

<flowattr> '{' \**type** 'flow' '}' & \**srcN** & \**destN** & \**rateN** & <oshape> & '{' \**valve** <pt> '}'

| <b>Control Word</b> | Meaning                                                                                    |  |
|---------------------|--------------------------------------------------------------------------------------------|--|
| type                | Symbol type is flow.                                                                       |  |
| src<br>dest         | Numeric id of source and<br>destination symbol, which must<br>be level (cloud if omitted). |  |
| rate                | Numeric id of symbol<br>controlling valve. The symbol<br>must be a variable or a link.     |  |
| <oshape></oshape>   | Shape of flow.                                                                             |  |
| valve               | Position of valve symbol in twips.                                                         |  |

Note that current tools only support poly lines for flow paths, and that lines must be either horizontal or vertical. This may be changed in the future.

### 9.20 Link attributes

<linkattr> '{' \type 'link' '}' & \srcN \destN & \init & \delay & <oshape>

| delay             | If present, it is a delayed link. |
|-------------------|-----------------------------------|
| <oshape></oshape> | Shape of link.                    |

# 9.21 Joint attributes

| <jointattr></jointattr> | '{' \ <b>type</b> 'joint' '}' &                          |
|-------------------------|----------------------------------------------------------|
|                         | `{` \ <b>src</b> ( <id> ';' )* <id> '}' &amp;</id></id>  |
|                         | `{` \ <b>dest</b> ( <id> `;` )* <id> `}` &amp;</id></id> |
|                         | \acrossN & \downN & <cshape></cshape>                    |

| <b>Control Word</b> | Meaning                                                   |
|---------------------|-----------------------------------------------------------|
| type                | Symbol type is joint.                                     |
| src                 | List of source link numbers, currently restricted to one. |
| dest                | List of destination link numbers.                         |
| across<br>down      | Position of center of symbol measured in twips.           |
| <cshape></cshape>   | Shape of joint.                                           |

# 9.22 Report attributes

This group is not completed...

<repattr> '{' \type 'report' '}' & '{' \title <string> '}' & \acrossN & \downN & \widthN & \heightN ( <tableattr> | <graphattr> | <barattr> | <numberattr> | <pictureattr> | <lineattr> )

| Control Word | Meaning                                                |                                                                            |
|--------------|--------------------------------------------------------|----------------------------------------------------------------------------|
| type         | Symbol type.                                           | 10. References                                                             |
| src          | Numeric id of source and                               |                                                                            |
| dest         | destination symbol, which must be variables or joints. | Microsoft Corporation 1994. <i>Rich Text Format (RTF)</i><br>Specification |
| init         | If present, it is an initialization link.              |                                                                            |