
Model Interchange Format (MIF)

File: 58MIF.DOC
Created: August 10, 1995
Revised: September 12, 1995
Pages: 35
Author: Magne Myrtveit
 ModellData AS
Status: DRAFT

1. Acknowledgments
I want to talk the System Dynamics Society for
encouraging the definition and use of this standard.

I also thank Bob Eberlein for valuable input to the
definition of the standard.

2. Background
The MIF standard is developed as a software
independent way of representing dynamic simulation
models. Typical uses of MIF will be for storing and
transferring models. Examples include:

• Creation of model libraries

• Inclusion of model disks with text books

• Transfer of models using e-mail

• Automatic creation of models from other sources

• Automatic conversion of models to other formats,
e.g. for inclusion in or use by other systems (e.g.,
authoring tools)

3. Requirements
MIF is designed to fill the following requirements.

• The bulk of existing system dynamic (SD) models
should be possible to represent.

• Software packages should be allowed to include
native information in MIF files. Native
information is used to represent information that is
not defined by the standard.

• MIF should be both backward and forward
compatible. This means that models stored in a
new version of MIF can be loaded into a tool
supporting only an older MIF version, and vice
versa.

• MIF files should transfer easily across (wide area)
networks.

• MIF files should transfer easily across operating
systems and hardware platforms, for example
between Macintosh and MS-Windows.

• The MIF standard must allow for future
expansions.

• Systems must be allowed to support only parts of
the standard.

• MIF models should be possible to include in
clipboard transfers, allowing for copy and paste
between tools.

As a note, MIF is primarily not designed to be easily
readable by humans. Visual appearance of MIF
models (layout) is therefore not important to the
standard.

4. Design guidelines
• The MIF standard is defined as a collection of

features. A given model may use a subset – a
given software may support a subset.

• Data in a MIF file is tagged. A tag is a label
identifying information. Future expansion is done
by adding more tags. Native information is
included using tag names starting with an
underscore.

• A MIF file consists of 7-bit ASCII text only1.

5. Categories of SD models
The following existing software packages are referred
to as a background for defining the standard:

Dynamo – Professional Dynamo Plus, version ?
from Pugh Roberts.

Powersim – Powersim version 2.0 from
ModellData.

Stella – Refers to Stella version ? and Ithink
version from High Performance Systems.

Vensim – Vensim version ? from Ventana.

1Other characters are stored as escape sequences, as
described in Syntax definition of MIF, page 27.

 Side 2 of 35

Current system dynamics models can be categorized
in three dimensions, according to the figure below:

Arrays
Discrete
Continuous
Diagram

Arrays
Discrete
Continuous
Diagram

Arrays
Discrete
Continuous
Diagram

Arrays
Discrete
Continuous
Diagram

Arrays
Discrete
Continuous
Diagram

The left part holds models without diagram
information, while the right hand side holds models
with diagrams.

The bottom rows hold scalar models, while the top
rows hold models using arrays.

The front holds continuous models, while the back
holds models that also contain discrete variables
(ovens, queues, conveyors).

Most current SD models fit into one of the five
groups, listed below:

A
rr

ay
s

D
is

cr
et

e

C
on

tin
uo

us

D
ia

gr
am

1
2
3

5
4

Scalar Dynamo models
Dynamo models w/arrays
Powersim, Stella, Vensim

Powersim, Vensim
Stella w/queues, conveyors, ovens

Examples

Attributes

G
ro

up

Group number 3 contains the bulk of existing models.
By stripping off the diagram information, also the
Dynamo software can load these models. Powersim,
Stella and Vensim can both load and store models in
this group.

For the above reasons version 1 of the MIF standard
is defined for continuous, scalar models with
graphical diagram information.

6. Comparison of SD tools
In the following the software tools Dynamo,
Powersim, Stella and Vensim are compared in order to

identify a common denominator that can be the basis
for version 1 of the MIF standard. Part of the
discussion does not include Dynamo, as it does not
include a graphical editor to create models.

6.1 Documents, views, windows

All the tools have an equations view (text view). In
addition one or more graphic visualizations (diagram
views) can be present (none for Dynamo).

Powersim has only one diagram view per model, but
several windows can be opened on the same view.
Each window has its own viewing options.

Stella has a stock and flow view and a mapping view.
In the mapping view sectors and bundled
connectors/flows can be displayed. The views of
Stella are different graphical representations
(diagrams) of the model.

Vensim has an arbitrary number of views. Each view
is edited separately. As with Stella, each view is a
separate diagram representation of a model.

The figure below displays a structure capturing the
way documents are organized for all four tools.

Window 1

Model

Diagram 1Text Diagram N

Window M

Figure 1: Structure of a model

Text and diagrams are “views” – that is, ways to
present (visualize) a model is various ways. In
particular, each diagram contains a set of symbols that
used to represent static or dynamic information about
a model. A window is used to display information
contained in a view. Windows can filter information
in various ways, for example by hiding certain symbol
types. The user can switch between views to be
displayed in a window.

 Side 3 of 35

6.1.1 Dynamo documents

Dynamo does not have a
graphical diagram editor, and
only one window can be opened
on a model. The figure to the
left displays the structure of this
system. It is easy to see how the
structure is a special case of the
structure in Figure 1.

6.1.2 Powersim documents

Powersim has a textual and a graphical representation
of a model. One or more windows can be opened.
Each window can be switched between text view
(equations) or diagram view. View options for both
equations and diagram are stored along with each
window. Again, the structure is a special case of
Figure 1.

Window 1

Model

DiagramText

Window M

6.1.3 Stella documents

Stella has an equations view, an accumulator flow
diagram and a sector map. The diagram and the map
are alternative graphical representations of a model.
One window is used to display either the text, the
diagram, or the map. If view options for all three
model representations are stored within the window,
we get a structure that can be generalized to an
arbitrary number of windows (as for Powersim). Thus,
Stella documents are also a special case of Figure 1.

Window

Model

DiagramText Sector Map

6.1.4 Vensim documents

Finally, the diagram below displays the way Vensim
documents are organized. An arbitrary number of
graphical views can be constructed for a model. In
addition, the model equations can be viewed as text.
One window is used to switch between views of the
model.

Window

Model

Diagram 1Text Diagram N

6.1.5 MIF compatible documents

For models without diagram information, the structure
to the left should be used for
MIF files.

Model documents with this
structure can be opened by
Dynamo and Vensim, and
possibly by future versions of
Powersim and Stella.

For models with graphical
diagram information, documents should be organized

as displayed below.
Documents in this
format can be loaded by
Dynamo, Powersim,
Stella and Vensim,
(given that a MIF reader
is included with the
tools).

Future versions of
Dynamo may or may not

be able to generate such models.

It should be noted that each tool may generate extra
views (diagrams) and windows. Such extra
information need not, however, be used by other tools
reading the files. This means, for example, that:

• Powersim will not read the map view of a MIF file
stored by Stella.

• Stella will only interpret the first window stored in
a MIF file produced by Powersim.

Window

Model

Text

Window

Model

Text

Window

Model

DiagramText

 Side 4 of 35

• Powersim and Stella will only use the first diagram
“view” of a Vensim model2.

• Dynamo will only use the equations of a MIF
model.

6.2 Equations

If we leave array variables out, all equations are
variable definitions. (Possible other equation types
include range definitions (FOR variables) and unit of
measure definitions.)

Variables can be divided into two groups, levels and
non-levels. The non-levels can be further subdivided
in various ways, depending on software.

6.2.1 Levels

Level equations (and corresponding diagrams) are
written like this in the various languages (L0 is the
initial value of a level L, and F the flow.):

Software Level equation and diagram
Powersim level L = L0 + dt*F

L
F

L0
Stella L(t) = L(t-dt) + (F)*dt

INIT L = L0

Vensim L = INTEG(F, L0)

Note: This is one of many ways to
create a Vensim diagram of a level

with an inflow and explicit
initialisation.

6.2.2 Non-levels

For the remaining variable types we have the
following example equations:

2The first Vensim view should be complete, i.e., all
defined variables should be represented as symbols.

Type Powersim Stella Vensim
const const L0 = 3 L0 = 3 L0 = 3
aux aux A = B*C A=B*C A = B*C
flow aux F = A*2 ...flows:

F = A*2
F = A*2

Powersim uses a tag (text or icon) to identify variable
type. Stella uses an iconic tag in equations view. The
tag is not copied when exporting equations as text.
Vensim does not use tags – equation type is deduced
from the right hand side of the equation. Dynamo uses
one-letter tags.

Note that a Vensim equation like the following must
be treated as a non-level (assuming L0 is not a
constant):
 L = L0 + INTEGR(F,0)

This is because a level definition implicitly “freezes”
the initial value. The following is OK for a level
definition:
 L = INIT(L0) + INTEGR(F, 0)

6.2.3 Table lookup functions

Let us look at how the tools can make a lookup into
the graph below.

0

0,2

0,4

0,6

0,8

1

0 0,1 0,2

X

Y

Figure 2: Example graph

6.2.3.1 Graphs in Dynamo
Dynamo specifies graphs using table functions, which
look like this:
 TABLE(Vector, X, Xlo, Xhi, Dx)

Dynamo has four table lookup functions, with
different interpolation and/or asymptotes.

Function Interpolation Asymptotes
TABLE Linear None

TABPL Polynomial None

TABHL Linear Horizontal

TABXT Linear Linear

 Side 5 of 35

No asymptotes means that an error will occur if X is
outside of the interval Xlo to Xhi.

Note that TABPL assumes that the vector argument
has extra room at the end for internal use by the
function.

The graph in Figure 2 can be expressed like this in
Dynamo.

Graph referring to variable T
A Y = TABLE(T(*), X, 0, 0.2, 0.1)
T T(*) = 0, 0.6, 0.4

6.2.3.2 Graphs in Powersim
Powersim uses vectors to define y-values of fix points
of a lookup function.
 GRAPH(X, X0, Dx, Vector)

The vector argument can be either a literal or a vector
variable. The fix points are evenly spaced in the X-
direction.

The parameters X, X0, and Dx can be any scalar
expressions.

The following graph functions are defined:

Function Interpolation Asymptotes
GRAPH Linear Horizontal

GRAPHCURVE Polynomial Linear

GRAPHLINAS Linear Linear

GRAPHSTEP Horizontal Horizontal

The example in Figure 2 can be expressed like this:

Alt. 1: Literal graph
aux Y=GRAPH(X,0,0.1,[0,0.6,0.4])

Alt. 2: Graph referring to variable T
aux Y = GRAPH(X,0,0.1,T)
const T = [0,0.6,0.4]

In the above equations, “Min:0;Max:1” can be added
as a comment inside the brackets.

6.2.3.3 Graphs in Stella
Stella lists pairs of fix points for the graph. Arguments
– excluding the independent variable – must be
literals.
GRAPH(X)
((X0, Y0), (X1, Y1), (X2, Y2), ...)

The fix points are evenly spaced in the X-direction.
Stella supports both linear and horizontal interpolation
(no distinction is made in equations view).

The input parameter (X) must be a variable. A graph
function cannot be part of an expression, i.e., a graph
must represent the entire right hand side of an
equation.

The example in Figure 2 can be expressed like this:

Literal graph
Y = GRAPH(X)
(0.00, 0.00), (0.1, 0.6), (0.2, 0.4)

6.2.3.4 Graphs in Vensim
Vensim lists pairs of fix points in a separate table
variable. Fix points can be nonuniformly spaced along
the X-dimension.

The example in Figure 2 can be expressed like this:

Alt. 1: Graph referring to variable T
y = t(x)
t((0,0),(0.1,0.6),(0.2,0.4))

Alt. 2: Graph referring to variable T
y=TABLE(t, x, 0, 0.2, 0.1)
t=0,0.6,0.4

Alternative 1 is a form that must be converted to
uniformly spaced points along the x-axis when loaded
by Dynamo, Powersim or Stella. This process can
result in a large number of fix points. As an example
the following definition of t would result in 1000
evenly spaced fix points!

t= ((0,1),(1,1),(100,1000),(1000,100000))

6.2.3.5 Conclusion on graphs
Limitations imposed by the various tools:

• Stella does not support arrays (vectors).

• Stella requires the independent axis to be given as
a variable (not an expression).

• Stella does not support graphs as part of an
expression.

• Stella requires the list of Y-values to be literals.

• Dynamo and Vensim does not support literal
arrays (vectors) as arguments to the table lookup
functions.

• Dynamo, Powersim and Stella do not support
variably spaced fix points in the X-direction.

• Dynamo and Vensim do not support horizontal
(discrete) interpolation.

The table lookup functions (at level one of MIF)
should be defined with the following properties:

 Side 6 of 35

• Input variable (X) should be defined as a variable
reference (not an expression).

• A graph function must define the entire right hand
side of an equation.

• Only linear interpolation and linear asymptotes are
supported.

• No use of separate vector variables.

• List of Y values for fix points defined as a list of
literals.

• List of X-values for fix points defined as literals
with fixed lower limit (X0) and fixed distance
(Dx).

Below is the definition of a graph function that fulfills
the above list of requirements:
 GRAPH(X, X0, Dx, [Y0, Y1, ...Yn-1])

X must be the name of a (scalar) variable. X0, Dx, Yi
must be literal numbers. The GRAPH function cannot
be used as part of another expression. Brackets are
used to group the Y values into a list (literal vector).

Dynamo and Vensim require a separate variable for
holding Y0, Y1, ...Yn-1. When loading a MIF file, these
tools should generate a new table variable to hold this
list. When storing a MIF file, Dynamo and Vensim
should expand the vector inline into the GRAPH
function, and optionally output a native tag defining
the name of the table variable that was used in the
graph.

As an example, the Dynamo definition
A Y = TABXT(T(*), X, 0, 0.2, 0.1)
T T(*) = 0, 0.6, 0.4

would be represented like this in MIF (the syntax used
below is explained starting on page 27):

{\var
 {\name Y}
 {\def GRAPH(X, 0, 0.1, [0, 0.6, 0.4])}
 {_tablename T}
}

6.2.4 Resulting equations format

An equations format with only one equation per
variable is preferred in setting the MIF standard.

More equation types will appear in future version of
MIF.

The syntax of a level definition and other definitions
should be similar. Both Powersim and Vensim has one
equation per variable, and a similar syntax for levels

and non-levels. (This was also true for Stella until the
equations format was changed.)

As a conclusion, variable equations will be identified
as objects with the following attributes:

Attribute Explanation

Name Variable name (left hand side of
equation)

Definition Variable definition (right hand side
of equation)

Documentation String describing the variable

Unit of measure String defining the unit of measure

Type One of the following: level,
auxiliary, constant. (Type can be
deduced from definition.)

Scale Default minimum and maximum
value of the variable when
displayed e.g., in a graph. The
min/max values can be specified by
the user or set to the lowest/highest
value taken on by the variable
during the most recent simulation.

6.3 Parameters to functions

Functions normally take scalar arguments than can be
literals, variables or expressions. Some functions put
restrictions on their parameters. Below is a list of
parameter types.

Parameter Explanation
normal Any valid expression.

literal The parameter must be a literal
number

variable The parameter must be a variable
reference

start-up The initial value of the parameter
will be used for the entire
simulation

computational The parameter will be evaluated
only when necessary

delayed The parameter value will influence
future results of the function using
the parameter.

In addition, some functions take optional parameters.
Optional parameters can be left out from right to left.

The various software tools interpret the above
parameter types slightly different.

 Side 7 of 35

Computational parameters are supported only by
Powersim. The other tools handle computational
parameters as normal parameters.

Powersim uses a separate delayed link in connection
with delayed parameters. Delayed parameters in
Powersim must be variables. Powersim allows for
circular definitions if a delayed link is involved in the
circle. Functions using delayed parameters include:
DELAYINF, DELAYMTR, DELAYPPL.

The GRAPH functions use a literal vector argument.
This does not mean that vectors variables need to be
supported by the tools in order to use the GRAPH
function.

6.4 List of functions

In order for a MIF model to load as unchanged as
possible into the tool that was used to create the
model, care has been taken to include as many
functions from the various tools as possible.

We also want to avoid putting unnecessary limitations
on the functions a user can use in a given tool when
creating MIF models. The only function categories
that are not defined by this MIF standard, are array
functions and functions on discrete variables
(conveyors, ovens, queues).

When loading a MIF file, unsupported functions
should be mapped into equivalent expressions (or
macros). Future releases of the software tools are
encouraged to include MIF functions that are not
possible to represent in current versions of the tools.

- - Subtraction

Syntax A - B

In A, B - Any number.

Result The difference between A and B.

Support Dynamo, Powersim, Stella, Vensim

- - Unary Minus

Syntax - A

In A - Any number.

Result A negated, i.e., (0 - A).

Support Dynamo, Powersim, Stella, Vensim

! - Factorial

Syntax A!

In A - Any number.

Result Not-a-number (=?), if A is less than 0.

 1, if A is zero.

 1*2*3*4*...*A, if A is an integer.

 Integrate(F) with F = TIME^A * EXP(-
TIME), start time equal to 0.0, and stop
time equal to infinity, if none of the above
rules can be applied.

Example The following expression is true:

 3! = 6

Support Powersim

% - Percent

Syntax A%

In A - Any number.

Result A divided by 100.

Example The following is true:

 A/100 = A%

Note Stella’s % operator behaves different, and
is listed under MOD.

Support Powersim

* - Multiplication

Syntax A * B

In A, B - Any number.

Result A multiplied by B.

Support Dynamo, Powersim, Stella, Vensim

+ - Addition

Syntax A + B

In A, B - Any number.

Result The sum of A and B.

Support Dynamo, Powersim, Stella, Vensim

+ - Unary plus

Syntax + A

In A - Any number.

Result A unchanged.

Support Dynamo, Powersim, Stella, Vensim

/ - Division

Syntax A / B

In A - Any number.

 B - Any number except 0.

 Side 8 of 35

Result A divided by B.

Support Dynamo, Powersim, Stella, Vensim

< - Less Than

Syntax A < B

In A, B - Any number.

Result True if A < B and False otherwise.

Support Powersim, Stella, Vensim

<= - Less Than or Equal To

Syntax A <= B

In A, B - Any number.

Result True if A<=B and False otherwise.

Support Powersim, Stella, Vensim

<> - Not Equal To

Syntax A <> B

In A, B - Any number.

Result True if A <> B and False otherwise.

Note See note for =.

Support Powersim, Stella, Vensim

= - Equal To

Syntax A = B

In A, B - Any number.

Result True if A = B and False otherwise.

Note Testing for equality should be avoided if
possible, since no computer is able to
represent all possible floating point
numbers accurately. This means that even if
the results of two expressions should
theoretically be the same, this may not be
the case when executed on a computer. The
following is an example of a "dangerous"
expression:

 IF(TIME = 5, B, C)

Support Powersim, Stella, Vensim

> - Greater Than

Syntax A > B

In A, B - Any number.

Result True if A > B and False otherwise.

Support Powersim, Stella, Vensim

>= - Greater Than or Equal To

Syntax A >= B

In A, B - Any number.

Result True if A >= B and False otherwise.

Support Powersim, Stella, Vensim

^ - Number Raised to a Power

Syntax A ^ B

In A, B - Any non-negative number.

Result Returns the value of A raised to the power
of B, e.g., AB.

Note The expression A ^ 0 is 1 for all values of
A. The expression 0 ^ B is 0 for all
values of B.

Support Dynamo, Powersim, Vensim

Dynamo A ** B

ABS - Absolute Value

Syntax ABS(X)

In X - Any number.

Result The absolute value of X.

Example The expression ABS(-3) = 3 is true.

Support Dynamo, Powersim, Stella, Vensim

AND - Conjunction, Logical And

Syntax A AND B

In A, B - Any number.

Result True if both A and B are True, and False
otherwise.

Note A related (but not equivalent) way of
expressing A AND B is:

 A * B.

Support Powersim, Stella, Vensim

Vensim :AND:

ARCCOS - Arcus Cosine

Syntax ARCCOS(Value)

In Value from interval [-1..1].

Result Angle defined by arcus sine of input value.
Angle lies in the interval [-Pi/2 .. Pi/2].

Support Powersim

 Side 9 of 35

ARCSIN - Arcus Sine

Syntax ARCSIN(Value)

In Angle - Angle in radians.

Result Angle defined by arcus cosine of input
value. Angle lies in the interval [0 .. Pi].

Support Powersim

ARCTAN - Arcus Tangent

Syntax ARCTAN(Value)

In Value.

Result Angle defined by arcus tangent of input
value. Angle lies in the interval <-Pi/2 ..
Pi/2>.

Support Powersim, Stella, Vensim

ATSTART - Test for Beginning of Simulation

Syntax ATSTART

Result True at the very beginning of the
simulation, and False otherwise.

Support Powersim

AVG - Average

Syntax AVG(X1, X2, ...XN)

In X1, X2,...XN - Any number (N >= 1)

Result The mean of the arguments, as defined by
the expression:

 (X1, X2, ...XN)/N

Note At least one argument must be specified.

Support Powersim, Stella

Stella MEAN(X1, X2, ...XN)

BOOL - Convert Number to Boolean

Syntax BOOL(X)

In X - Any number.

Result Returns 1 if ROUND(X) is not zero, and 0
otherwise.

Example The following expression is true:

 BOOL(X) = (ROUND(X) <> 0)

Support Powersim

CEIL - Round Number Up to Nearest Integer

Syntax CEIL(X)

In X - Any number.

Result Returns the smallest integer that is greater
than or equal to X.

Support Powersim

CLIP - IF Greater Than or Equal To

Syntax CLIP(P, Q, R, S)

In P, Q, R, S - Any numbers.

Result IF(R >= S, P, Q)

Note Same as FIFGE

Support Dynamo

COS - Cosine

Syntax COS(Angle)

In Angle - Angle in radians.

Result The cosine of Angle.

Support Dynamo, Powersim, Stella, Vensim

COSH - Hyperbolic Cosine

Syntax COSH (Value)

In Value.

Result The hyperbolic cosine of input value.

Support Powersim, Vensim

COSWAVE - Periodic Cosine Wave

Syntax COSWAVE(Amplitude, Period)

In Amplitude - Amplitude of the wave.

 Period - Period of the wave.

Result A time-dependent cosine wave, defined by
the equation:

 COSWAVE(A, P) = A * COS(TIME/P)

Note Function depends on TIME.

Support Powersim, Stella

DEGTOGRAD - Convert Degrees to Gradients

Syntax DEGTOGRAD(Angle)

In Angle - Angle in degrees.

Result The equivalent of Angle measured in
gradients, as defined by the equation:

 DEGTOGRAD(A) = A*400/360

Support Powersim

DEGTORAD - Convert Degrees to Radians

Syntax DEGTORAD(Angle)

 Side 10 of 35

In Angle - Angle in degrees.

Result The equivalent of Angle measured in
radians, as defined by the equation:

 DEGTORAD(A) = A*PI/180

Support Powersim

DELAYINF - N-th Order Information Delay

Syntax DELAYINF(Input, DelayTime[, Order=1[,
Initial(Order)=Input]])

In Input - Variable to be delayed (delayed
parameter).

 DelayTime - Delay time measured in the
time unit of the simulation.

 Order - Positive integer specifying the
order of the delay. It defaults to 1 if not
specified (optional start-up parameter).

 Initial - Initial delay value specified as a
vector expression with Order number of
elements. The elements of Initial default
to the value of Input if not specified.

 If Initial has fewer elements than Order,
the last element is replicated for the
remaining values (optional start-up
parameter).

Result The n-th order exponential information
delay of Input, using an exponential
averaging time equal to DelayTime, a given
delay order of Order, and a given Initial
value for the delay.

Restrict Order must be 1 or 3.

 Initial must be scalar (because of Stella).

Support Powersim, Stella

Stella SMTHN(Input, DelayTime, Order, Initial)

DELAYINF1 - First Order Information Delay

Syntax DELAYINF1(Input, DelayTime[,
Initial=Input])

In Input - Variable to be delayed (delayed
parameter).

 DelayTime - Delay time measured in the
time unit of the simulation.

 Initial - Initial delay value. Initial defaults
to the value of Input if not specified
(optional start-up parameter).

Result The first order exponential information
delay of Input, using an exponential

averaging time equal to DelayTime, and a
given Initial value for the delay.

Restrict Initial must be omitted (because of
Dynamo).

Support Dynamo, Stella, Vensim

Dynamo SMOOTH(Input, DelayTime)

Stella SMTH1(Input, DelayTime[, Initial])

Vensim SMOOTH(Input, DelayTime)

 SMOOTHI(Input, DelayTime, Initial)

DELAYINF3 - Third Order Information Delay

Syntax DELAYINF3(Input, DelayTime [,
Initial[(3)]=Input])

In Input - Variable to be delayed (delayed
parameter).

 DelayTime - Delay time measured in the
time unit of the simulation.

 Initial - Initial delay value. Initial defaults
to the value of Input if not specified
(optional start-up parameter).

Result The third order exponential information
delay of Input, using an exponential
averaging time equal to DelayTime, a given
delay order of Order, and a given Initial
value for the delay.

Restrict Initial must be scalar (because of Stella).

 Initial must be omitted (because of
Dynamo).

Support Dynamo, Stella, Vensim

Dynamo DLINF3(Input, DelayTime)

Stella SMTH3(Input, DelayTime[, Initial])

Vensim SMOOTH3(Input, DelayTime)

 SMOOTH3I(Input, DelayTime, Initial)

DELAYMTR - N-th Order Material Delay

Syntax DELAYMTR(Input, DelayTime[,
Order=1[, Initial(Order)=Input]])

In Input - Variable to be delayed (delayed
parameter).

 DelayTime - Delay time measured in the
time unit of the simulation.

 Order - Positive integer specifying the
order of the delay (optional start-up
parameter with default equal to 1).

 Side 11 of 35

 Initial - Initial delay value specified as a
vector expression, with Order defining
the number of elements. The elements
of Initial default to the value of Input if
not specified. If Initial has fewer
elements than Order, the last element is
replicated for the remaining values
(optional start-up parameter).

Result The n-th order exponential material delay
of Input, using an exponential averaging
time of DelayTime, a given delay Order,
and a given Initial value for the delay.

Restrict Order must be 1 or 3.

 Initial must be scalar (because of Stella).

 Initial must be omitted (because of
Dynamo).

Support Powersim

DELAYMTR1 - First Order Material Delay

Syntax DELAYMTR1(Input, DelayTime [,
Initial=Input])

In Input - Variable to be delayed (delayed
parameter).

 DelayTime - Delay time measured in the
time unit of the simulation.

 Initial - Initial delay value (optional start-up
parameter).

Result The first order exponential material delay
of Input, using an exponential averaging
time of DelayTime, and a given Initial
value for the delay.

Restrict Initial must be omitted (because of
Dynamo).

Support Dynamo, Vensim

Dynamo DELAY1(Input, DelayTime)

Vensim DELAY1(Input, DelayTime)

 DELAY1I(Input, DelayTime, Initial)

DELAYMTR3 - Third Order Material Delay

Syntax DELAYMTR3(Input, DelayTime [,
Initial[(3)]=Input])

In Input - Variable to be delayed (delayed
parameter).

 DelayTime - Delay time measured in the
time unit of the simulation.

 Initial - Initial delay value (optional start-up
parameter).

Result The third order exponential material delay
of Input, using an exponential averaging
time of DelayTime, and a given Initial
value for the delay.

Restrict Initial must be scalar (because of Stella).

 Initial must be omitted (because of
Dynamo).

Support Dynamo, Vensim

Dynamo DELAY3(Input, DelayTime)

Vensim DELAY3(Input, DelayTime)

 DELAY3I(Input, DelayTime, Initial)

DELAYPPL - Pipeline Delay

Syntax DELAYPPL(Input, DelayTime[,
Initial=Input])

In Input - Variable to be delayed (delayed
parameter).

 DelayTime - Delay time measured in the
time unit of the simulation (start-up
parameter).

 Initial - Initial delay value (optional start-up
parameter with default equal to Input).

Result The value of Input at DelayTime time units
earlier in the simulation. During the first
DelayTime time units of the simulation, the
values specified by Initial are returned
(Initial is a vector with one element per
time step for a period equal to DelayTime).

Support Powersim, Stella, Vensim

Stella DELAY(Input, DelayTime, Initial)

Vensim DELAY_FIXED(Input, DelayTime, Initial)

DELAYPPLINF - Variable Time Information
Pipeline Delay

Syntax DELAYPPLINF(Input, DelayTime,
MaxDelayTime [, Initial=Input))

In Input - Value to delayed (delayed
parameter)

 DelayTime - Delay time measured in the
time unit of the simulation.

 MaxDelayTime - Maximum delay time
measured in the time unit of the
simulation.

 Side 12 of 35

 This variable is used, in combination
with the simulation time step to
determine the maximum size of the
internal storage that is used by the
function.

 Initial - Initial delay value (optional start-up
parameter with default equal to Input).

Result The "infinite" order information delay of
Input with delay time DelayTime.

Note The difference between DELAYPPLINF
and DELAYPPL is that DELAYPPLINF
will adjust to a changing DelayTime during
simulation (while DELAYPPL uses the
initial value of DelayTime for the entire
simulation).

 The difference between DELAYPPLMTR
and DELAYPPLINF lies in the transient
response to a change in DelayTime (see
Delay Functions).

 Use DELAYPPL if the delay time is
constant.

Support Powersim

DELAYPPLMTR - Variable Time Material
Pipeline Delay

Syntax DELAYPPLMTR(Input, DelayTime,
MaxDelayTime [, Initial=Input))

In Input - Value to delayed (delayed
parameter)

 DelayTime - Delay time measured in the
time unit of the simulation.

 MaxDelayTime - Maximum delay time
measured in the time unit of the
simulation.

 This variable is used, in combination
with the simulation time step to
determine the maximum size of the
internal storage that is used by the
function.

 Initial - Initial delay value (optional start-up
parameter with default equal to Input).

Result The "infinite" order material delay of Input
with delay time DelayTime.

Note The difference between DELAYPPLMTR
and DELAYPPL is that DELAYPPLMTR
will adjust to a changing DelayTime during
simulation (while DELAYPPL uses the

initial value of DelayTime for the entire
simulation).

 The difference between DELAYPPLMTR
and DELAYPPLINF lies in the transient
response to a change in DelayTime (see
Delay Functions).

 Use DELAYPPL if the delay time is
constant.

Support Powersim

DERIVN - N-th Order Time Derivative

Syntax DERIVN(Input[, Order=1])

In Input - Expression to be derivated.

 Order - Order of derivation. Default value
is 1 (optional start-up parameter).

Result Returns N-th Order time derivative of
Input.

Note Function result depends on previous values
of Input.

Support Powersim, Stella

DIVZ0OP - Division with Zero Result for Zero
Denominator

Syntax A DIVZ0OP B

In A, B - Any number.

Result IF(B<>0, A/B, 0)

See also DIVZ0

Support Powersim

DIVZ0 - Division with Zero Result for Zero
Denominator

Syntax DIVZ0(A, B)

In A, B - Any number.

Result IF(B<>0, A/B, 0)

See also DIVZ0

Support Vensim

Vensim ZIDZ(,) -- ?

DIVZ1OP - Division with Unit Result for Zero
Denominator

Syntax A DIVZ1OP B

In A, B - Any number.

Result IF(B<>0, A/B, 1)

Support Powersim

 Side 13 of 35

DIVZX - Division with Explicit Result for Zero
Denominator

Syntax DIVZX(A, B, X)

In A, B, X - Any number.

Result IF(B<>0, A/B, X)

Support Powersim, Vensim

Vensim XIDZ(,,) -- ?

EULER - Sample at Start of Time Step

Syntax EULER(X)

In X - Any variable (computational
parameter).

Result The value of X at the beginning of the
current time step.

Note X must be a variable (expressions and
literals are not allowed).

 This function is sometimes useful with
higher order integration methods, where
several computations are performed
between each time step. If we want a value
(e.g., a rate) to be constant during the
intermediate calculations of a higher order
integration, EULER may be used.

Support Powersim

EXP - Exponential of Number

Syntax EXP(X)

In X - Any number.

Result Returns the exponential of X (e raised to
the power of X (ex)).

Note This is the inverse function of LN, i.e.,
LN(EXP(X)) = X.

Restrict: -174 ≤ X ≤ 174 (Dynamo)

Support Dynamo, Powersim, Stella, Vensim

EXPRND - Exponential Distribution

Syntax EXPRND ([Mean=1[, Seed]])

In Mean - Mean value of distribution (optional
parameter with default equal to one).

 Seed - Initialization of random number
generator (optional start-up parameter
with random default value).

Result Generates a series of exponentially
distributed random numbers with a mean of
Mean.

Examples EXPRND generates exponentially
distributed random numbers with mean
equal to 1.

 EXPRND(5) is the same as 5*EXPRND,
both generating a series of exponentially
distributed numbers with a mean of 5.

Support Powersim, Stella

Vensim RANDOM_EXPONENTIAL() -- no args!

FALSE - Logical False

Syntax FALSE

Result The value zero.

Support Powersim

FIFGE - First If Greater Than or Equal To

Syntax FIFGE(P, Q, R, S)

In P, Q, R, S - Any numbers.

Result IF(R >= S, P, Q)

Note Same as CLIP.

 Use IF instead.

Support Dynamo

FIFZE - First If Third is Zero

Syntax FIFZE(P, Q, R)

In P, Q, R - Any numbers.

Result IF(R = 0, P, Q), which is the same as
IF(R, Q, P).

Note Same as Dynamo’s SWITCH.

 Use IF instead.

Support Dynamo

FLOOR - Round Number Down to Nearest Integer

Syntax FLOOR(X)

In X - Any number.

Result Returns the largest integer that is less than
or equal to X.

Examples FLOOR (3.14) = 3

 FLOOR (-5.5) = -6

Support Powersim

FORECAST - Value Forecasting

Syntax FORECAST (Input, PastTime,
FutureTime[, Initial=0])

 Side 14 of 35

In Input - Value to be predicted.

 PastTime - Positive number determining the
averaging time used in computing the
trend in Input, measured in the time unit
of the simulation.

 FutureTime - Non-negative number
determining how far into the future a
forecast is going to be, measured in the
time unit of the simulation.

 Initial - Initial trend value (optional start-up
parameter with default equal to zero).

Result The forecaster value of Input at a time
FutureTime into the future. The function
computes the first order exponential
average of Input by using an averaging time
of PastTime, and then extrapolates the trend
a distance equal to FutureTime into the
future.

Note The function depends on previous values of
its first parameter.

Support Powersim, Stella

FRAC - Fraction of Number

Syntax FRAC(X)

In X - Any number.

Result The fractional (decimal) part of X.

Note The relationship between X, INT(X) and
FRAC(X) is the following (for all values of
X):

 X = INT(X) + FRAC(X)

Examples FRAC(3.14) = 0.14

 FRAC(-5.5) = -0.5

Support Powersim

FV - Future Value

Syntax FV (Rate, Periods, Payment, PresentValue)

In Rate - Rate per period.

 Periods - Number of periods.

 Payment - Periodic payment.

 PresentValue - Present value.

Result Future value (see Introduction to Financial
Functions)

Support Powersim, Stella

GRADTODEG - Convert Gradients to Degrees

Syntax GRADTODEG (Angle)

In Angle - Angle in gradients.

Result The equivalent of Angle measured in
radians, as defined by:

 GRADTODEG(A) = A*360/400

Support Powersim

GRADTORAD - Convert Gradients to Radians

Syntax GRADTORAD (Angle)

In Angle - Angle in gradients.

Result The equivalent of Angle measured in
radians, as defined by:

 GRADTORAD(A) = A*PI/200

Support Powersim

GRAPHLINAS - Linear Graph with Linear
Asymptotes

Syntax GRAPHLINAS (X, X1, Dx, Y(N))

In X - Any number (independent variable).

 X1 - Value of X corresponding to the first
sample, i.e., Y(1).

 Dx - Increment between sampled X-values.
Must be positive.

 Y - Vector with at least one element.

Result GRAPHLINAS is used to express a
function by giving a set of function values
for a series of equally spaced input values,
as listed below:

 Input Output

 X1 Y(1)

 X1+Dx Y(2)

 X1+2*Dx Y(3)

... ...

 X1+(N-1)*Dx Y(N)

 If X is less than X1 then the value is
extrapolated on the basis of Y(1) and Y(2),
i.e., a line through the two first points of the
sample.

 If X is greater than X1 + (N-1)*Dx then the
value is extrapolated on the basis of
the last two points in the sample, i.e., Y(N-
1) and Y(N). This means that the function

 Side 15 of 35

uses linear asymptotes based on the two
most extreme points at both edges of the
sample.

Restrict Dynamo and Vensim require a separate
table variable to create a table lookup
function. Table variables will not be
exported to the MIF file. Instead the table
elements will be expanded inline into the
[...] part of the GRAPHLINAS function.

 Stella does not support table lookup as part
of an expression.

 Stella requires X to be a variable.

 Stella requires X1 and Dx to be literals.

Support Dynamo, Powersim, Stella, Vensim

Dynamo TABXL(T, X1, X1 + (N-1)*Dx, Dx)

 T = Y(1), Y(2), ..., Y(N-1), Y(N)

Vensim TABXL(T, X1, X1 + (N-1)*Dx, Dx)

 T = Y(1), Y(2), ..., Y(N-1), Y(N)

Stella Generated by Become Graph.

HIVAL - Highest Simulated Value

Syntax HIVAL(X)

In X - Any number.

Return The highest value of the expression X so
far in the simulation.

Note Function depends on previous values of its
parameter.

Support Powersim

HYPOT - Hypotenuse

Syntax HYPOT(X, Y)

In X, Y - Any number.

Result The square root of X2 + Y2, i.e., the length
of the hypotenuse of a square-angled
triangle. This may also be expressed as:
SQRT(X^2+Y^2).

Support Powersim

IF - Arithmetic If

Syntax IF(Condition, Value1, Value2)

In Condition - Logical value (True or False).

 Value1 - Any numeric expression
(computational parameter).

 Value2 - Any numeric expression
(computational parameter).

Result The value of Value1 is evaluated and
returned if Condition is True. The value of
Value2 is evaluated and returned otherwise.

Support Dynamo, Powersim, Stella, Vensim

Powersim Will compute only one of Value1 or
Value2.

Dynamo SWITCH(Value2, Value1, Cond)

 FIFZE(Value2, Value1, Cond)

Stella IF Cond THEN Value 1 ELSE Value2

Vensim IF_THEN_ELSE(Cond, Value1, Value2)

INFINITY - Infinitely Large Positive Number

Syntax INFINITY

Result A value that is used to represent a number
that is too large to be represented by the
computer.

Note Use -INFINITY to denote an infinitely
large negative number.

 The largest number that may be stored by
Powersim is 1.0E+300.

Support Powersim

INIT - Initial Value

Syntax INIT(X)

In X - Any numeric expression (computational
start-up parameter).

Result The initial value of X.

Note The function depends on previous value of
its parameter.

 X will only be evaluated during the
initialization stage of the simulation, and
the resulting value will be returned for the
rest of the simulation.

Restrict X must be a level variable (because of
Stella)

Support Powersim, Stella, Vensim

Stella INIT(X)

Vensim INITIAL(X)

INT - Integer Part of Number

Syntax INT(X)

In X - Any number.

 Side 16 of 35

Result Returns the integer part of X.

Note The relationship between X, INT(X) and
FRAC(X) is the following (for all values of
X):

 X = INT(X) + FRAC(X)

Examples INT(3.14) = 3

 INT(-5.5) = -5

Support Powersim, Stella, Vensim

Vensim INTEGER(X)

INTEGRATE - Integration

Syntax INTEGRATE(X[, Init=0])

In X - Variable to be integrated over time
(delayed parameter).

 Init - Initial value (optional start-up
parameter).

Result Init plus the integrated value of X, i.e., Init
plus the sum Xt/Dt for all time steps from
the beginning of the simulation to the
current time.

Note The function depends on previous values of
its parameter.

Restrict Powersim: X must be a variable
(expressions and literals are not allowed),
and in the diagram X must be connected to
the current variable using a delayed link.

Support Powersim, Vensim

Vensim INTEGR(X, Init)

Powersim INTEGRATE(X) -- should add optional
Init

ISGT - Greater Than

Syntax ISGT(A, B)

In A, B - Any numbers.

Result Same as A > B.

Note Use > instead.

Support Stella

Stella SWITCH(A, B) = ISGT(A, B)

LN - Natural Logarithm

Syntax LN(X)

In X - Any positive number.

Result The natural logarithm of X.

Support Dynamo, Powersim, Stella, Vensim

Dynamo LOGN(X)

Stella LOGN(X)

LOG - Base N Logarithm

Syntax LOG(X[, Base=10])

In X - Any positive number.

 Base - Base of logarithm (optional
parameter with default equal to 10).

Result The base N logarithm of X.

Support Powersim, Vensim

LOG10 - Base 10 logarithm

Syntax LOG10(X)

In X - Any positive number.

Result The base 10 logarithm of X.

Support Stella

LOVAL - Lowest Simulated Value

Syntax LOVAL (X)

In X - Any number.

Result The lowest value of the expression X so far
in the simulation.

Note The function depends on previous values of
its parameter.

Support Powersim

MAX - Maximum

Syntax MAX(X1, X2, ...XN)

In X1, X2, ...XN - Any number.

Result The maximum of the arguments.

Restrict N=2 (because of Dynamo and Vensim)

Support Dynamo, Powersim, Stella, Vensim

MIN - Minimum

Syntax MIN(X1, X2, ...XN)

In X1, X2, ...XN - Any number.

Result The minimum of the arguments.

Restrict N=2 (because of Dynamo and Vensim)

Support Dynamo, Powersim, Stella, Vensim

MOD - Remainder of Division

Syntax A MOD B

 Side 17 of 35

In A - Any number.

 B - Any number except zero.

Result The remainder of A / B, defined as the
value R such that:

 A = B * k + R

 where k is an integer and ABS(R) <
ABS(B).

See also MODULO

Support Powersim, Stella

Stella A % B

MODULO - Remainder of Division

Syntax MODULO(A, B)

In A - Any number.

 B - Any number except zero.

Result The remainder of A / B, defined as the
value R such that:

 A = B * k + R

 where k is an integer and ABS(R) <
ABS(B).

See also MOD

Support Stella, Vensim

Stella MOD(A, B)

Vensim MODULO(A, B)

MONTECARLO

Syntax MONTECARLO(Probability[, Seed])

In Probability - Any number between 1 and
100.

Result RANDOM(0, 100, Seed) <= Probability *
TIMESTEP

Support Stella

NAN - Not a Number

Syntax NAN

Result A value that is used to represent an invalid
number.

Support Powersim

NORMAL - Normal Distribution

Syntax NORMAL ([Mean=0[, Deviation=1[,
Seed]]])

In Mean - Mean value of distribution, with
default equal to 0 (optional parameter).

 Deviation - Deviation of distribution, with
default equal to 1 (optional parameter).

 Seed - Initialization of random number
generator (optional start-up parameter with
random default value).

Result Generates a series of normally distributed
random numbers with a mean of Mean and
a standard deviation of Deviation.

Examples 5 + NORMAL generates normally
distributed random numbers with mean = 5
and standard deviation = 1.

 20 + 3*NORMAL generates normally
distributed random numbers with mean =
20 and standard deviation = 3.

 NORMAL(20, 3) generates the same
distribution as the one above.

 NORMAL(5) generates normally
distributed random numbers with mean = 5
and standard deviation = 1.

Support Dynamo, Powersim, Stella

Dynamo NORMRN(Mean, Deviation)

Vensim RANDOM_NORMAL() -- no args!

NOT - Negation

Syntax NOT A

In A - Logical value, True or False.

Result True if A is False, and False otherwise.

Example The following is true: NOT 1 = 0; and NOT
0 = 1.

Note A related way of expressing NOT A is: 1 -
A.

Support Powersim, Stella, Vensim

Vensim :NOT:

NPV - Net Present Value

Syntax NPV(Payment, InterestRate)

In Payment - Input variable.

 InterestRate - Rate per time unit.

Result The Net Present Value

Note What do we do with Stella’s Initial?

Support Powersim, Stella

 Side 18 of 35

Stella NPV(Input, InterestRate[, Initial])

OR - Logical Or

Syntax A OR B

In A, B - Logical value, True or False.

Result True if at least one of A or B is True, and
False otherwise.

Note A related way of expressing A OR B is: A
+ B - A * B.

Support Powersim, Stella, Vensim

Vensim :OR:

PCT - Convert Number to Percent

Syntax PCT(X)

In X - Any number.

Result X * 100

Support Powersim, Stella

PI - Trigonometric Constant Pi

Syntax PI

Result Value of Pi, i.e., 3.141592654...

Support Powersim, Stella

PMT - Periodic Payment

Syntax PMT(Rate, Periods, PresentValue,
FutureValue)

In Rate - Discount rate per period.

 Periods - Number of periods.

 PresentValue - Present value.

 FutureValue - Future value.

Result Periodic payment.

Support Powersim, Stella

POISSON - Poisson Distribution

Syntax POISSON ([Mean=1[, Seed]])

In Mean - Mean value of distribution (optional
parameter with default equal to 1).

 Seed - Initialization of random number
generator (optional start-up parameter
with random default value).

Result Generates a series of random numbers
according to the Poisson distribution, with a
mean of Mean.

Note Stella must store POISSON(M) as
POISSON(M*DT)/DT and load
POISSON(X) as POISSON(X/DT)*DT.

Support Powersim, Stella

Vensim RANDOM_POISSON() -- no args!

POLY - Polynomial

Syntax POLY(X, A0 [, A1, ..., An])

In X - Any number.

 A0...An - Any number (polynomial
coefficients).

Result The polynomial function of X, as defined
by the expression:

Support Powersim

PULSE - Periodic Pulse

Syntax PULSE(Volume, First, Interval)

In Volume - Pulse volume (computational
parameter).

 First - Time of first pulse, measured in the
time unit of the simulation.

 Interval - Time interval between pulses,
measured in the time unit of the simulation.

Result Volume/TIMESTEP or 0, depending on the
current TIME and the values of

 First and Interval. A pulse occurs at the
time First, and every time Interval
thereafter.

Note The function depends on TIME and
TIMESTEP.

 The relationship between PULSE and
PULSEIF is the following:

 PULSE(V, F, I) =
PULSEIF(TIMECYCLE(F, I), V)

 Dynamo’s PULSE function behaves
different, and is listed under TIMECYCLE.

Support Powersim, Stella

Stella PULSE(Volume[, First, Interval])

PULSEIF - Conditional Pulse

Syntax PULSEIF(Condition, Volume)

In Condition - Condition True or False
determining if pulse is going to occur.

 Volume - Pulse volume (computational
parameter).

 Side 19 of 35

Note The function depends on TIMESTEP.

Result Zero if Condition is False and
Volume/TIMESTEP otherwise.

Support Powersim

PV - Present Value

Syntax PV(Rate, Periods, Payment, FutureValue)

In Rate - Rate per period.

 Periods - Number of periods.

 Payment - Periodic payment.

 FutureValue - Future value (optional
parameter with default equal to zero).

Result Present value.

Support Powersim, Stella

RADTODEG - Convert Radians to Degrees

Syntax RADTODEG(Angle)

In Angle - Angle in radians.

Result The equivalent of Angle measured in
degrees, as defined by the equation:

 RADTODEG(A) = A*180/PI

Support Powersim

RADTOGRAD - Convert Radians to Gradients

Syntax RADTOGRAD (Angle)

In Angle - Angle in radians.

Result The equivalent of Angle measured in
degrees, as defined by the equation:

 RADTOGRAD(A) = A*200/PI

Support Powersim

RAMP - Linear Function

Syntax RAMP(Slope, First)

In Slope - Slope of the function.

 First - Time to start ramp.

Result 0 if TIME < First, and (Slope * TIME -
First) otherwise, as defined by the
following equation:

 RAMP(S, F) = IF(TIME < F, 0, (TIME-
F)*S)

Support Dynamo, Powersim, Stella

Dynamo RAMP(Slope, Time)

Stella RAMP(Slope[, Time])

RANDOM - Uniform Distribution

Syntax RANDOM([Min=0[, Max=Min+1[,
Seed]]])

In Min - Minimum value to be returned
(optional parameter with default equal
to 0).

 Max - Maximum value to be returned
(optional parameter with default equal
to Min+1).

 Seed - Initialization of random number
generator (optional start-up parameter
with random default value).

Result Uniformly distributed random number
between Min and Max.

Examples 5 + RANDOM returns uniformly
distributed random numbers between 5 and
6. This may also be expressed as:
RANDOM(5).

 20 + 3*RANDOM returns uniformly
distributed random numbers between 20
and 23. This can also be expressed as:
RANDOM(20, 23)

Support: Dynamo, Powersim, Stella, Vensim

Dynamo Min + (NOISE()+0.5) * (Max-Min)

Stella RANDOM(Min, Max[, Seed])

Vensim Min + RANDOM_0_1() * (Max-Min)

ROUND - Round Number to Nearest Integer

Syntax ROUND(X)

In X - Any number.

Result X rounded to the nearest integer, according
to the following formula:

 ROUND(X) = IF(X>=0, FLOOR(X+0.5),
CEIL(X-0.5))

Support Powersim, Stella

SAMPLE - Periodic Sample

Syntax SAMPLE(Input, First, Interval[, Initial=0])

In Input - Any numeric expression to be
sampled (computational parameter).

 First - First sampling time measured in the
time unit of the simulation.

 Interval - Sampling interval measured in the
time unit of the simulation.

 Side 20 of 35

 Initial - Value returned by SAMPLE until
the first sampling time (optional start-up
parameter with default equal to zero).

Result SAMPLE is periodically set equal to Input
and retains this value until the next
sampling time. The first sample is taken at
time First, and new samples are taken every
Interval time units thereafter. SAMPLE
returns the value of Initial until the first
sample time.

Note The function depends on TIME and on
previous values of its first parameter.

Restrict First should be set equal to STARTTIME
(because of Dynamo).

Support Dynamo, Powersim

Dynamo SAMPLE(Input, Interval, Initial)

SAMPLEIF - Conditional Sample

Syntax SAMPLEIF(Condition, Input[, Initial=0])

In Condition - Conditional value True or
False, which determines whether a
sample is to be taken.

 Input - Any numeric expression to be
sampled (computational parameter).

 Initial - Value to be returned by
SAMPLEIF until the first time
Condition is True (optional start-up
parameter with default equal to zero).

Result The value of Input at the most recent
sampling time. Before the first sampling
time, the value of Initial is returned.

Note The function depends on previous values of
its second parameter.

Support Powersim, Vensim

Vensim SAMPLE_IF_TRUE(Cond, Input, Initial)

SIGN - Sign of Number

Syntax SIGN (X)

In X - Any number.

Result +1 if X is positive, -1 if X is negative, and 0
otherwise.

Example The following is true:

 SIGN(X) = IF(X < 0, -1, IF(X > 0, 1, 0))

Support Powersim

SIN - Sine

Syntax SIN(Angle)

In Angle - angle in radians.

Result The sine of Angle.

Support Dynamo, Powersim, Stella, Vensim

SINH - Hyperbolic Sine

Syntax SINH(Value)

In Value.

Result The hyperbolic sine of input value.

Support Powersim, Vensim

SINWAVE - Periodic Sine Wave

Syntax SINWAVE(Amplitude, Period)

In Amplitude - Amplitude of the wave.

 Period - Period of the wave.

Result A time-dependent sine wave, defined by the
equation:

 SINWAVE(A, P) = A * SIN(TIME/P)

Note The function depends on TIME.

Support Powersim, Stella

SQRT - Square Root

Syntax SQRT(X)

In X - Any non-negative number.

Result The square root of X.

Example The relationship between SQRT and ^ is:
SQRT(X) = X ^ 0.5

Support Dynamo, Powersim, Stella, Vensim

STARTTIME - Start Time of Simulation

Syntax STARTTIME

Result The start time of the simulation, as defined
in the Simulation Setup dialog box.

Support Stella, Powersim

STDDEV - Standard Deviation

Syntax STDDEV (X1, X2, ...Xn)

In X1, X2, ...Xn - Any number.

Result The standard deviation of the arguments, as
defined by:

Support Powersim

 Side 21 of 35

STEP - Step Function

Syntax STEP(Height, StepTime)

In Height - Numeric expression determining
step height.

 StepTime - Numeric expression
determining time of step.

Result Zero if TIME is less than StepTime, and
Height otherwise.

Support Dynamo, Powersim, Vensim

STOPTIME - Stop Time of Simulation

Syntax STOPTIME

Result The stop time of the simulation, as defined
in the Simulation Setup dialog box.

Support Powersim

SUM - Sum of expressions

Syntax SUM(X1, X2, ...XN)

In X1, X2, ...XN - Any number.

Result The sum of the arguments.

Note Powersim’s SUM function behaves
different, and is not possible to represent by
the other tools. It is therefore not part of the
MIF standard.

Support Stella

Stella SUM(X1, X2, ...)

SWITCH - First If Third is Zero

Syntax SWITCH(P, Q, R)

In P, Q, R - Any numbers.

Result IF(R = 0, P, Q), which is the same as
IF(R, Q, P).

Note Stella’s SWITCH function behaves
different, and is listed under ISGT.

 Same as Dynamo’s FIFZE.

 Use IF instead.

Support Dynamo

TAN - Tangent

Syntax TAN(Angle)

In Angle - Angle in radians.

Result The tangent of Angle.

Support Powersim, Stella, Vensim

TANH - Hyperbolic Tangent

Syntax TANH(Value)

In Value.

Result The hyperbolic tangent of input value.

Support Powersim, Vensim

TIME - Current Time of Simulation

Syntax TIME

Result The current time of the simulation, starting
at the value of STARTTIME, and
incremented by TIMESTEP for each step of
the simulation.

Note The function depends on TIME
(obviously).

Support Dynamo (variable) Powersim, Stella,
Vensim (variable)

TIMECYCLE - Test for Cyclic Time or Time
Interval

Syntax TIMECYCLE(First, Interval[, Duration=0[,
Height=1]])

In First - First time to check for.

 Interval - Time between intervals to check
for.

 Duration - Length of interval (optional
parameter with default equal to zero).

 Height - Value to be returned when inside
time interval (optional parameter with
default equal to one).

Result Value if current simulation time is within
an interval from First + k * Interval to First
+ k * Interval + Duration, where k is a non-
negative integer.

Note The function depends on TIME and
TIMESTEP.

 When testing against TIME the size of the
time step is taken into account.

Support Dynamo, Powersim

Dynamo PULSE(Height, Duration, First, Interval)

TIMEIS - Test for Given Time or Time Interval

Syntax TIMEIS(PointInTime[, Duration=0])

In PointInTime - Numeric expression
determining time to be tested for.

 Side 22 of 35

 Duration - Duration of time interval to test
for (optional parameter with default
value equal to zero).

Result True if current time lies in the interval
PointInTime to PointInTime+Duration.

Support Powersim, Vensim

Vensim PULSE(PointInTime, Duration)

TIMESTEP - Time Step of Simulation

Syntax TIMESTEP

Result The time step of the simulation, as defined
in the Simulation Setup dialog box.

Support Powersim, Stella

Dynamo DT

Stella DT

TREND - Trend Extrapolation

Syntax TREND(Input, AveragingTime[, Initial=0])

In Input - Numeric expression to be examined
over time.

 AveragingTime - Averaging time.

 Initial - Initial value of the TREND
function (optional start-up parameter
that defaults to zero).

Result The first order exponential average change
rate of Input, using the given

 AveragingTime. The value is expressed as
the relative change in Input per time unit.

 The function depends on previous values of
its first parameter.

Support Powersim, Stella

TRUE - Logical True

Syntax TRUE

Result The value one.

Note When used in a condition, any value which
rounds to something different from zero is
regarded to be true.

Support Powersim

XOR - Exclusive Logical Or

Syntax A XOR B

In A, B - Logical value, True or False.

Result True if one, and only one, of A and B is
True, and False otherwise. In other words:

 (A AND NOT B) OR (NOT A AND B)

 or simply:

 BOOL(A) <> BOOL(B)

Note When using <> and = on logical values, it
is a good practice to use BOOL on the
values first. This ensures that True values
are set to one. The example below
illustrates this point, as the two expressions
do not produce the same result:

 3 = 4 -- is false

 BOOL(3) = BOOL(4) -- is true

 A related way of expressing A XOR B is: A
+ B - 2 * A * B.

Support Powersim

6.5 Variable symbols

The following variable symbols appear in SD
diagrams:

Variables Powersim Stella Vensim
Level

Level_1

(use any)

Auxiliary

Auxiliary_1

(use any)
Constant

Constant_1

(use
auxiliary)

(use any)
Snapshot

Level_1

Variable symbols refer to variable definitions in the
equations part of the MIF file.

Vensim does not enforce consistency between symbol
shape and variable type.

A Powersim constant is an auxiliary with a static
definition (the value is independent of time).

Powersim and Stella display snapshots according to
variable type. Vensim puts the name in angle brackets
(<>) and normally omits the symbol shape.

Variable symbol attributes:

Attribute Powersim Stella Vensim
Line color 16 2, 16, 256

depending
on HW

64

 Side 23 of 35

Fill color
trans-
parent

X X X

solid 64
Line width fixed (1) fixed (1) free: 0->
Size 4 steps fixed free
Name pos.

free
outside

 X

inside X
below X x X
above X x X

left X x X
right X x X

Name font fixed fixed free
Shape

none X (const.)
by type X X X (default)

box levels levels X (levels)
clear box X

circle auxiliaries auxiliaries X (aux.)
hexagon X
diamond constants X
triangle X

up triangle X

In storing variable symbols, the following fields will
be defined by MIF.

Field Values Default
Type ‘var’ ‘var’
Symbol id Numeric ID of

this symbol
(local to each
view)

–

Visible 0 (no) or 1 (yes) 1
Selected 0 (no) or 1 (yes) 0
Variable Name of

associated
variable

–

Position
across 1/20*1/72 inch –
down 1/20*1/72 inch –

Size
width 1/20*1/72 inch –

height 1/20*1/72 inch –
Line width 1/20*1/72 inch 15 (3/4 pt)
Line color

red 0..255 0
green 0..255 0

blue 0..255 0
Fill type One of the ‘transparent’

following:
‘transparent’
‘solid’

Fill color
red 0..255 255

green 0..255 255
blue 0..255 255

Name pos.
placement One of the

following:
‘outside’
‘inside’

‘outside’

angle 0..360 270 (only used
when ‘outside’)

Name font see RTF system default
Shape One of the

following:
‘none’
‘box’
‘clear box’
‘circle’
‘hexagon’
‘diamond’
‘triangle’
‘up triangle’

–

Auto shape 0 (off) 1 (on) 1 (Vensim’s
“by type”)

Current shape One of the
following:
‘none’
‘box’
‘clear box’
‘circle’
‘hexagon’
‘diamond’
‘triangle’
‘up triangle’

–

Snapshot, ghost 0 (no) or 1 (yes) 0

The figure below displays how the various
measurements are applied to a variable symbol.

 Side 24 of 35

width

height

Rate_1 angle

(0,0) across

do
w

n

Figure 3: Variable symbol measurements

The gap between the variable shape and the name can
be determined by each software. Powersim and
Vensim will round the angle to the nearest multiple of
90. Powersim and Stella will force the variable name
‘outside’.

6.6 Arrows

The following building blocks are used to make links
and flows:

Arrow Powersim Stella Vensim
Source,
sink

(must be
part of
flow,

cannot be
moved)

(must be
part of

flow, can
be moved a

little)

Valve
(part of
flow)

(part of
flow)

(can be

sized and
rotated in
steps of

90º)
Arrow

Shape determined
by type

determined
by type

arc
polyline

p. h/v-line
Style fixed fixed several

Joint must be
part of link

must be
part of link

(indep.
symbol of

type
“comment”
displayed

as an icon)
Link

(Three
kinds:

normal,
init,

delayed)

 Use arrow

Flow-with-
rate

use flow,
link, aux.

Use arrow,
valve,

arrow, var.
Flow part of

flow-with-
rate

Use arrow,
valve,
arrow

As can be seen from the above table, the various SD
tools operate with different atomic building blocks for
making links and flows.

Vensim’s approach is loosely connected to the
traditional SD concepts of conserved (material) flows
and nonconserved (information) flows. Only certain
combinations of arrows, valves, comment symbols,
and variable symbols represent valid SD flow
diagrams in the traditional sense. The MIF format will
support only such combinations.

6.7 Flows

A flow is a conserving link, that is, a link that moves a
mass from one place to another.

Flows must start and end in a cloud or a level variable.

The rate of mass per time unit is controlled by a
variable, connected to the flow valve either through an
information link or by direct association.

Below is a list of all valid flow end connections. (The
valve is omitted, and will be discussed separately
below.)

cloud -> flow -> cloud

Level_1

cloud -> flow -> level

Level_1

level -> flow -> cloud

Level_2Level_1

level -> flow -> level

The flow rate must be controlled by a variable either
directly or via an information link. Below all valid
connections to a flow-valve are listed.

 Side 25 of 35

Aux

auxiliary -> flow-valve

Const

constant -> flow-valve

link -> flow-valve

Level

level -> flow-valve

If a MIF file contains a link to flow-valve connection,
Stella should automatically generate a rate variable
(auxiliary) and point the link to that variable. The
definition of the rate should be set equal to the name
of the variable at the other end of the link.
(Alternatively Stella can remove the link symbol and
merge the rate variable symbol with the flow symbol.
If the same variable is used to control N flows, N-1
helper variables must be created.)

Stored in MIF file Interpretation by Stella

Any

If a MIF file contains a level to flow-valve connection
(discouraged), Stella should generate a rate variable
(auxiliary), add a link from the level to the rate, and
define the rate equal to the name of the Level.
Powersim should add a link from the level to the flow
valve.

Stored in MIF
file

Interpretation
by Stella

Interpretation
by Powersim

Level
 Level

Below is a list of attributes that will be stored for a
flow in the MIF file.

Field Type Default
Type ‘flow’ ‘flow’
Symbol id Numeric ID of

this symbol
–

(local to each
view)

Visible 0 (no) or 1 (yes) 1
Selected 0 (no) or 1 (yes) 0
Path p followed by

series of the
following:
line p
arc p1,p2
curve p1,p2,p3
(see page 33)

–

Line width 1/20*1/72 inch 15 (3/4 pt)
Line color

red 0..255 0
green 0..255 0

blue 0..255 0
Source Numeric ID of

source symbol
-1 (interpret as
cloud)

Destination Numeric ID of
destination
symbol

-1 (interpret as
cloud)

Rate Numeric ID of
symbol
(variable or
link) controlling
valve

–

Valve Position
across 1/20*1/72 inch –
down 1/20*1/72 inch –

A line style with two parallel lines is assumed.

Cloud symbols and valve symbols should not be
stored in the MIF file.

Vensim can have several links (arrows) pointing at a
valve. A MIF compatible Vensim model should not
allow for more than one link pointing to a valve.

As an example, some Vensim model are drawn with
both the flow rate and the level initialization pointing
at the valve symbol A MIF compatible Vensim model
would point the rate at the valve and the initialization
at the level.

a) Not MIF compatible b) MIF compatible

When loading a model as displayed in alternative b,
Stella would simply ignore the link from L0 to L. The
rate F can be merged (moved) into the flow by Stella,
as Stella does not support links-to-flow connections.

 Side 26 of 35

6.8 Links

A link is non-conserving, that is, mass will not be
moved through the link.

Below is a list of valid sources of a link. Several links
can depart from the same symbol.

Aux

auxiliary

Const

constant

Level

level

joint (junction)

Below are the valid destinations of a link. Several
links can point at the same symbol. Several links to a
joint (Vensim) is discouraged.

(Stella does not seem to support joints.)

Aux

auxiliary

Const

constant3

Level

level4

 joint5

Below is a list of attributes that will be stored for a
link in the MIF file.

Field Type Default
Type ‘link’ ‘link’
Symbol id Numeric ID of

this symbol
(local to each
view)

–

Visible 0 (no) or 1 (yes) 1

3The source (e.g., A) of a link to a constant is used in
a constant expressions, e.g. INIT(A). Powersim
displays initialization links using dotted lines.
4Stella does not draw links to levels. Hence, links to
levels should be skipped by Stella.
5Vensim supports several links pointing at the same
joint. Stella and Powersim should make every link
except the first point directly to the variables pointed
at by the link(s) leaving the joint.

Selected 0 (no) or 1 (yes) 0
Path p followed by

series of the
following:
line p
arc p1,p2
curve p1,p2,p3

–

Line width 1/20*1/72 inch 15 (3/4 pt)
Line color

red 0..255 0
green 0..255 0

blue 0..255 0
Source Numeric ID of

source symbol
(variable or
joint)

–

Destination Numeric ID of
destination
symbol
(variable or
joint)

–

The line style is assumed to be a solid line. Powersim
will display links to levels as dotted lines.

6.8.1 Delayed links

Powersim has some functions that accept delayed
parameters. Links via delayed parameters can be used
in a circle (feedback loop). A delayed link symbol is
required for delayed parameters. Vensim and Stella
should use normal links instead. Replacing delayed
links with normal links can result in double links
between two symbols. In that case the delayed link
symbol should be dropped by Stella and Vensim.

As Stella does not allow for circles, even when delay
functions are used, delayed links should not be used to
create circles. Use explicit flow-to-level combinations
instead.

6.9 Reports

The following report objects are shared by the SD
packages.

 Powersim Stella Vensim
Time graph
(in place)

TIME
0 40 100

0
40

100

(also has

icon)

N/A

(icon) N/A

N/A

(window) N/A

 Side 27 of 35

(also has
icon)

Time table
(in place)

X X N/A

Time table
(icon)

N/A X N/A

Time table
(window)

N/A X X

(incomplete...)

7. Structure of MIF files
A MIF file is organized as displayed below.

File

Header Model
The header contains information about the MIF file
version, character set and originating software, as
displayed below.

Header

Version Charset Originator
All models created with one version of a software will
contain the same information in the MIF header.
Information about the model itself is stored in the
Model part. This part contains global information
about the model (title, subject, author, etc.), settings
for options of the software tool, model equations, and
graphical views into the model.

Model

Information Options Equations Views

Windows
The equations part contains a list of variable
definitions. In future versions of the standard, index
variables (for variables) and array dimensions will
also be included here.

Views can be graphical or textual. A graphical view
can contain objects that are variables, flows, links,
graphs, tables, etc. A list of one or more windows is
used to display views. A window can display one
view at the time.

8. Language for syntax definition
In the following, the MIF syntax is described using a
syntax based on the Backus-Naur Form:

Syntax Meaning
‘c’ A literal
<text> A nonterminal.

a The terminal control word a, without a
parameter.

aN The terminal control word a, with a
parameter N.

a? Item a is optional.
a+ One or more repetitions of item a.
a* Zero or more repetitions of item a.
a b Item a followed by item b.
a | b Item a or item b.
a & b Item a and/or item b, in any order.

9. Syntax definition of MIF
The MIF standard is partially based on the Rich Text
Format (RTF) standard, developed by Microsoft
(1994). MIF is, however, not compatible with RTF, in
any way.

Information is grouped in the MIF file using curly
braces ({}).

Each group of data starts with a tag, which is a name
preceded by a backslash, e.g. like this \info.

Identifiers are used to name variables and functions,
etc. Identifiers can contain arbitrary characters (e.g.,
spaces and foreign language characters). Characters
outside the range 0-9, a-z, A-Z must be quoted like
this:

\a The character a.

Characters with ordinal numbers greater than 127
must be written using escape sequences, like this:

\’hh A hexadecimal value, based on the
specified character set (may be used to
identify 8-bit values).

Colors are represented as rgb (red, green, blue) values,
like this:

<rgb> \rN & \gN & \bN

9.1 The file group

At the top level a MIF file can be defined like this:

<file> ‘{‘ <header> <model> ‘}’

9.2 The header group

The header contains global information about the file,
including file version.

<header> \mifN <charset> <originator>
<charset> \ansi | \mac
<originator> ‘{‘ \origN (‘dynamo’ | ‘stella’ |

‘powersim’ | ‘vensim’) ‘}’

Control Word Meaning
mif Version of MIF file (0).

 Side 28 of 35

ansi ANSI character set, i.e., MS-
Windows (default)

mac Macintosh character set

orig Originating software. Numeric
argument holds software
version times 1000.

Future versions of the MIF format may include
identification for categories of models, e.g. \array for
array models and \discrete for models with discrete
variable types. Presence of diagram information is
taken from the Views section of the Model part.

Header example, Powersim model version 2.01 for
MS-Windows:

\mif0\ansi{\orig2010 powersim}

9.3 The model group

A model will have some global information in
addition to the set of objects from which it is
composed. Following the RTF standard, we define a
model like this:

<model> <info>? <options>* <equations>?
<view>* <window>*

<equations> { \equations <equation>* }
<view> { \view <viewtype> <viewsize>?

<viewopt>* <symbol>* }
<window> ‘{‘ \window <winsize> <winopt>*

‘}’

Control Word Meaning
equations Group holding the equations of

the model.

view The model can have one or
more views.

window The model can have one or
more windows. Each window
displays a view.

9.4 The information group

This group contains title, subject, author, etc.6

<info> ‘{‘ \info ‘{‘ \title <string> ‘}’ &
 ‘{‘ \subject <string> ‘}’ &
 ‘{‘ \author <string> ‘}’ &
 ‘{‘ \operator <string> ‘}’ &
 ‘{‘ \keywords <string> ‘}’ &
 ‘{‘ \comment <string> ‘}’ &
 ‘{‘ \version <string> ‘}’ &

6The definition can be taken directly from the RTF
standard.

 ‘{‘ \doccomm <string> ‘}’ &
 ‘{‘ \creatim <time> ‘}’ &
 ‘{‘ \revtim <time> ‘}’ &
 ‘{‘ \printtim <time> ‘}’ &
 ‘{‘ \buptim <time> ‘}’ &
 ‘{‘ \edminsN ‘}’ & \logpixxN &

\logpixyN ‘}’
<time> \yrN \moN \hrN \minN

Control Word Meaning
title Title of document

subject Subject of document

author Author of document

operator Person who last made changes
to document

keywords Selected key words for
document

comment Comments; text is ignored

version Version number of document

doccomm Comments displayed in Edit
Summary Info dialog box

creatim Creation time

revtim Revision time

printtim Last print time

buptim Backup time

edmins Total editing time in minutes

yr Year

mo Month

hr Hour

min Minute

logpixx
logpixy

Screen resolution when
document saved (pixels per
inch)

An example of the information group follows:
{\info{\title The coffee cup} {\author
Arne-Helge Byrknes}}

9.5 Model options group

This group will hold global options for the document,
including editing options, viewing options and page
information. The group will normally contain native
information (tags starting with an underscore (_)).

<options> <times> & <integr> & <pause> &
& \noedit & \nosave &
\nextlevN & \nextauxN &

 Side 29 of 35

\nextconstN & \nextrateN &
<printopt> &

 \paperwN & \paperhN &
\marglN & \margrN &
\margtN & \margbN &
\facignp & \gutterN &
\headeryN & \footeryN &

 ‘{‘ \header <string> ‘}’ &
 ‘{‘ \footer <string> ‘}’

Control Word Meaning
noedit The user cannot edit the file,

used for games.

nosave The user cannot save the file,
used for libraries.

nextlev
nextaux
nextconst
nextrate

Number of next level (stock),
auxiliary (converter), constant,
rate variable when generating
automatic names, e.g., Level_1,
Level_2, etc.

paperw Paper width in twips

paperh Paper height in twips

margl Left margin in twips

margr Right margin in twips

margt Top margin in twips

margb Bottom margin in twips

facingp Facing pages (off)

gutter Extra margin space to allow for
binding.

headery Distance from top of page to
header.

footery Distance from bottom of page
to footer.

header Header text, can contain field
codes for page numbering, etc.

footer Footer text, can contain field
codes for page numbering, etc.

9.6 Times group

This group specifies time horizon and time step of the
simulation.

<times> ‘{‘ \times \fromN & \toN & \dtN &
\runcntN & <timeunit> ‘}’

<timeunit> ‘{‘ \unit <ident> ‘}’

Control Word Meaning

from Start time of simulation.

to Stop time of simulation.

dt Time step of simulation.

unit Time unit of simulation.

runcnt Number of runs (1) to be
simulated in sequence.

(Here number of runs can also be included if greater
than one. The same goes for cyclic time.

9.7 Integration group

The integration method is specified by this group.

<integr> { \integr \orderN & \varstep &
\abserrN & \relerrN }

Control Word Meaning
order Order of integration method

varstep Variable step integration (off)

abserr Absolute error limit

relerr Relative error limit

The following integration methods are supported:

Integration method Options
Euler \order1

Runge Kutta 2 \order2

Runge Kutta 4 \order4

Runge Kutta 4 variable step \order4 \varstep

Absolute and relative error limits may be specified for
variable step integration.

9.8 Pause group

This group specifies automatic pauses during the
simulation.

<pause> ‘{‘ \pause ‘{‘ \firstsN & \everysN
& \use ’}’ &

 ‘{‘ \firsttN & \everytN & \use ‘} ‘}’

If omitted, no automatic pause will occur. A pause can
be specified as intervals in terms of the time unit or
the time step. The use tag determines which pause
specification is active.

Control Word Meaning
firsts Time of first pause in steps

firstt Time of first pause in time units

everys Length of interval between
pauses in steps

 Side 30 of 35

everyt Length of interval between
pause in time units

use Use the pause specification if
the group that holds this control
word.

The following example will pause the simulation
every time unit.
{\pause{\firsts0\everys10}{\firstt0\ever
yt1\use}}

This example will pause the simulation every ten time
steps.
{\pause{\firsts0\everys10\use
}{\firstt0\everyt1}}

9.9 The equations group

Each equation is defined by its own group. Only
variable equations need to be specified. Unit of
measure definitions can also be included.

<equation> <unitdef>* <vardef>*

9.10 Unit equations

Units of measure are used to document variables and
optionally also to verify unit consistency for variable
definitions.

<unitdef> ‘{‘ \unit ‘{‘ \name <identifier> ‘}’ &
 ‘{‘ \def <unitexpr> ‘}’ &
 ‘{‘ \doc <string> ‘}’ ‘}’
<unitexpr> <unitfact> |
 <unitfact> ‘*’ <unitfact> |
 <unitfact> ‘/’ <unitfact> |
 <unitfact> ‘^’ <number>
<unitfact> <number> |
 <name> |
 ‘(‘ <unitexpr> ‘)’

A unit expression is composed from unit names and
numbers that can be multiplied, divided or raised to a
power. Examples include:
 m/s
 people/week
 m/s^2

9.11 Variable equations

A variable must have a name. Unless undefined, the
variable must also have a definition. The variable can
be documented, and a value range (scale) can be
given. An optional unit of measure can also be
present. Future versions of the MIF format will
include a dimensions group for specifying array
variables.

<vardef> ‘{‘ \var ‘{‘ \name <ident> ‘}’ &

 ‘{‘ \dim <dimensions> ‘}’ &
 ‘{‘ \def <expression> ‘}’ &
 ‘{‘ \unit <unitexpr> ‘}’ &
 ‘{‘ \doc <text> ‘}’ &
 ‘{‘ \scale \minN & \maxN & \loN

& \hiN & \fixmax & \fixmin
& \yminN & \ymaxN ‘}’ ‘}’

Control Word Meaning
var Identifies a variable definition

group.

name Name of variable.

dim Dimensions of variable,
reserved for future array
expansion.

def Definition of variable.

unit Optional unit of measure.

doc Documentation of variable.

scale Scale group.

min
max

Minimum and maximum value
of variable.

lo
hi

Lowest and highest value of
variable during latest
simulation.

fixmin If present, use min value as
scaling. Otherwise use lo value.

fixmax If present, use max value as
scaling. Otherwise use hi value.

ymin
ymax

Minimum and maximum scale
of graph function’s y-axis.
(Powersim: Edit Graph; Stella:
Become Graph).

The syntax of the right hand side of a variable
definition is defined below:

<expr> <factor> |
 <prefix op> <expr> |
 <expr> <infix op> <expr> |
 <expr> <postfix op>
<factor> <literal> |
 <varref> |
 <funcall> |
 ‘(‘ <expr> ‘)’
<literal> <decimal number>
<varref> <ident>
<funcall> <ident> <parlist>?
<parlist> ‘(‘ <expr> (‘,’ <expr>)* ’)’

Unary operators:

 Side 31 of 35

Oper. Prec. Pos. Purpose
+ 8 prefix Unary plus

- 8 prefix Unary minus

NOT 8 prefix Negation

! 8 postfix Factorial

% 8 postfix Percent

Binary operators:

Oper. Prec. Assoc. Purpose
^ 7 right Raised to a power

* 6 left Multiplication

/ 6 left Division

MOD 6 left Remainder of division

DIVZ0 6 left Division, zero if by zero

DIVZ1 6 left Division, one if by zero

+ 5 left Plus

- 5 left Minus

< 4 left Less than

<= 4 left Less than or equal to

> 4 left Greater than

>= 4 left Greater than or equal to

= 3 left Equal to

<> 3 left Not equal to

AND 2 left Logical and

XOR 1 left Logical exclusive or

OR 1 left Logical or

In order to avoid ambiguity, parenthesis should be
used when making expressions involving several
different operators in a row.

Example: ((A + B) * C) mod 10

9.11.1 Comments

Comments that are included in expressions will be
regarded as white space (space, tab, line feed).
Comments should be enclosed in apostrophes (“).

9.11.2 Unit of measure

Literals can be followed by a unit of measure
specification, which is a text string enclosed inside
curly braces.

Example: Speed + 10 {m/s}

9.12 The view group

A view can either be a text view (equations) or a
diagram view (symbols). Each view is controlled by a
set of options, and can contain a set of symbols
(variable symbols, time graphs, bars, pictures, etc.).

<view> { \view <viewtype> \widthN &
\heightN & \scaleonpause
& \noautoreports &
<viewopt>* <symbol>* }

<viewtype> \text | \diagram

Control Word Meaning
view Identifies a view group

text The view is a text view

diagram The view is a accumulator flow
diagram

width
height

Width and height of view area
in twips. The values are
optional, and can be obtained
by examining the contents of
the view.

scaleonpause If present redisplay reports with
scaleable axis whenever the
simulation is paused, after
having updated lo and hi values
for variable values. See The
equations group, page 30.

noautoreports If present, automatic reports in
connection to variable symbols
are disabled.

9.13 The view options

<viewopt> ‘{‘ \title <string> ‘}’ &
 ‘{‘ \fill <rgb> ’}’ &
 \showpages & \showrulers &

\nohscroll & \novscroll &
 & <iconsheet> &

 <diaopt>* | <eqopt>*

Control Word Meaning
title Title of view.

fill Color of background.

showpages Show page borders (off)

showrulers Show rulers (off).

nohscroll No horizontal scroll bar (on)

novscroll Ho vertical scroll bar (on)

<iconsheet> Global icon table, see below.

 Side 32 of 35

In defining symbols it is possible to refer to icons by
index. The iconsheet holds information about the
icons. (Used by Vensim.)

<iconsheet> ‘{‘ \iconsheetN <icon>* ‘}’
<icon> ‘{‘ \icon <file>? <data> ‘}’
<file> ‘{‘ \file <string> ‘}’
<data> ‘{‘ \data <hexstring> ‘}’

Control Word Meaning
iconsheet Table with N icons.

icon Definition of an icon.

file Name of file holding icon.

data Data defining icon.

9.14 Diagram view options

Diagram and equations views have different options.

<diaopt> ‘{‘ \grid \snap & \unitN & \distxN
& \distyN & \angleN ‘}’ &

 ‘{‘ \symdflt <varsym> &
<linksym> & <flowsym> &
<reportsym> ‘}’ &

 ‘{‘ \symhide <varsym>* &
<linksym>* & <flowsym>* &
<reportsym>* ‘}’ &

 ‘{‘ \autoreports <varsym>* &
<linksym>* & <flowsym>* &
<reportsym>* ‘}’ &

 \showundef & \showfun &
\zoomN

Control Word Meaning
grid Grid settings group.

snap If present, snap to grid.

unit Unit of measure used for distx
and disty, 0=pixel, 1=cm,
2=inch, 3=point (1/72 inch).

distx
disty

Distance between grid lines,
measured according to unit.

angle Angular grid, measured in
degrees. Zero means that
angular grid off.

symdflt Default attributes (e.g., colour)
of newly created symbols. A
prototype of each symbol type
can be listed here.

symhide Group containing symbol types
that should be hidden. As an
example, a if a link symbol is
present in this group, all links

should be hidden.

autoreports Group containing prototypes
for symbol types with auto
report settings to be applied on
a global basis. Any other
settings are ignored.

showundef Indicate if a variable is
undefined, e.g., by adding a
question mark.

showfun Indicate use special functions
(table lookup, stochastic, time
dependent, etc.) inside variable
symbols.

zoom Percent zooming (100)

9.15 Equations view options

<eqopt> ‘{‘ \varhide ‘def’ & ‘doc’ & ‘dim’ &
‘scale’ & ‘unit’ ‘}’ &

 \showtimes & \icon
 ... sort equations by ...

Control Word Meaning
varhide List of parts of a variable

definition that shall not be
displayed in the equations view.

showtimes Add time specification to the
equations view.

icon Use icons instead of text to
label equations.

Other options: Print size (%). Printer selection. Not
defined yet.

9.16 The window group

A window is used to display a view. It is possible to
switch views. Therefore each window can hold
options for many views. However, only one view is
current, i.e., being displayed.

<window> ‘{‘ \window \widthN \heightN &
\maximize & \minimize
<winopt>* ‘}’

<winopt> ‘{‘ \viewN \show? \downN
\acrossN <viewopt>* ‘}’

Control Word Meaning
window Identifies window group.

width
height

Width and height of window in
twips, in restored mode, i.e.,
not as maximized or minimized.

 Side 33 of 35

maximize If present, the window is
maximized.

minimize If present, the window is
minimized. (Should position of
icon be specified here?)

view Options for given view number,
counting from one.

show If present, this view is currently
displayed in the window. Only
one show control word should
be present per window.

across
down

Position of upper, left hand
corner of window relative to
view – measured in view
coordinates. These values
determine scrolling of window.

The mapping from view coordinates to window
coordinates is depicted below.

across

width

do
w

n

height

width*100/zoom

height*100/zoom

VIEW WINDOW

9.17 The symbols

Symbols are identified by a type and a numeric
identifier. Symbols can be visible or invisible; and
part of the current selection or not.

Remaining attributes depend on the type.

<symbol> ‘{‘ \sym \idN \invisible &
\selected <varattr> |
<linkattr> | <flowattr> |
<jointattr> | <repattr> ‘}’

(Should we add clouds, valves, comments?)

Control Word Meaning
sym This is a symbol group.

id Numeric identifier that is
unique for this view.

invisible If present, the symbol is to be
hidden.

selected If present, the symbol is part of
the current selection.

Graphically, symbols have either closed or open
shapes. Variable symbols and reports are examples of
closed shapes, while links and flows are open shapes.

Shapes can be explicitly described using paths.

<path> ‘{‘ \path <pt> <pt> (<lineseg> |
<arc> | <polyline> | <bezier>
) * ‘}’

<lineseg> ‘{‘ \line <pt> <pt> ‘}’
<arc> ‘{‘ \arc <pt> <pt> ‘}’
<polyline> ‘{‘ \polyline <pt> <pt> <pt>* ‘}’
<bezier> ‘{‘ \bezier <pt> <pt> <pt> <pt> ‘}’

Control Word Meaning
path Path describing flow. The two

points identify the starting point
of the path. The path primitives
below display how a path is
extended from its current point
(displayed as an open circle).

(path) arc Arc segment of path. The
current point is taken as the
starting point. A point on the
arc is given together with the
ending point.

(path) bezier Curve segment of path. Two

handles and the ending point
are given.

(path) line Line segment of path. The

ending point is given.

(path) polyline Polyline segment of path.

Bending points and ending
point are given.

Drawing attributes for closed shapes are given below.

 Side 34 of 35

<cshape> ‘{‘ \cshape
 ‘{‘ \line \tr \wN & <rgb> ‘}’ &
 ‘{‘ \fill \tr & <rgb> ‘}’ &
 \auto & <path> &
 (\none | \box | \circle |

\hexagon | \diamond |
\triangle | \uptriangle |
<icon> | <bitmap> |
<metafile>) ‘}’

<icon> ‘{‘ \iconN <file> & <data> ‘}’
<bitmap> ‘{‘ \bitmap <file> & <data> ‘}’
<metafile> ‘{‘ \metafile <file> & <data> ‘}’
<file> ‘{‘ \file <string> ‘}’
<data> ‘{‘ \data <hexstring> ‘}’

Control Word Meaning
(line) tr If present, no outline is drawn.

(line) w Line width of outline in twips.

(line) <rgb> Line color.

(fill) tr If present the symbol is
transparent, i.e., without fill
color.

(fill) <rgb> Fill color.

auto Shape is determined by symbol
type (default).

<path> Shape is given by explicit path.
The last point of the path is
connected to the first using a
straight line closing the path.

none
box
circle
hexagon
diamond
triangle
uptriangle
icon
bitmap
metafile

Shape is given predefined
shape.

A clear box is represented as a
box with a line that is
transparent (tr).

The optional argument to icon
is an index into a global icon
lookup table. If N is omitted,
the icon file or data should be
given

file Name of file holding icon,
bitmap, or metafile.

data Data for current icon, bitmap,
metafile. Will be used if file is
not found when opening the
document.

Drawing attributes for open shapes are given below.

<oshape> ‘{‘ \oshape
 ‘{‘ \line \wN & <rgb> ‘}’ &

 <path> ‘}’

Control Word Meaning
(line) w Line width of outline in twips.

(line) <rgb> Line color.

<path> Path describing shape. The path
is not closed.

9.18 Variable attributes

Automatic reports (animation) can be set to graph,
number and slider. See Diagram view options, page
32.

<varattr> ‘{‘ \type ‘var’ ’}’ &
 ‘{‘ \subtype (‘level’ | ‘aux’ |

‘const’) ’}’ &
 \rate & \snapshot & \acrossN &

\downN & \widthN &
\heightN & \autograph &
\autonum & \autoslider &
<cshape> &

 ‘{‘ \name <ident> ‘}’ &
 ‘{‘ \nampos \inside & \angleN?

 ‘}’ ‘}’

Control Word Meaning
type Symbol type is variable.

subtype Kind of variable.

rate If present, the variable is used
as a rate, i.e., controlling a
flow.

snapshot If present the symbol is a
snapshot (alias, ghost, shadow).

across
down

Position of center of symbol
measured in twips.

width
height

Size of symbol bounding box,
excluding name that can be
outside of symbol.

autograph
autonum
autoslider

Display a graph, number or
slider representing the symbol’s
current value.

<cshape> Shape of symbol.

name Name of variable associated
with symbol.

(nampos) inside If present the name is placed
inside of the symbol.

(nampos) angle Angle from center of symbol to
center of name text measured in

 Side 35 of 35

degrees. See Figure 3, page 24.

9.19 Flow attributes

<flowattr> ‘{‘ \type ‘flow’ ‘}’ &
 \srcN & \destN & \rateN &

<oshape> &
 ‘{‘ \valve <pt> ‘}’

Control Word Meaning
type Symbol type is flow.

src
dest

Numeric id of source and
destination symbol, which must
be level (cloud if omitted).

rate Numeric id of symbol
controlling valve. The symbol
must be a variable or a link.

<oshape> Shape of flow.

valve Position of valve symbol in
twips.

Note that current tools only support poly lines for
flow paths, and that lines must be either horizontal or
vertical. This may be changed in the future.

9.20 Link attributes

<linkattr> ‘{‘ \type ‘link’ ‘}’ &
 \srcN \destN & \init & \delay &
 <oshape>

Control Word Meaning
type Symbol type.

src
dest

Numeric id of source and
destination symbol, which must
be variables or joints.

init If present, it is an initialization
link.

delay If present, it is a delayed link.

<oshape> Shape of link.

9.21 Joint attributes

<jointattr> ‘{‘ \type ‘joint’ ‘}’ &
 ‘{‘ \src (<id> ‘;’)* <id> ‘}’ &
 ‘{‘ \dest (<id> ‘;’)* <id> ‘}’ &
 \acrossN & \downN & <cshape>

Control Word Meaning
type Symbol type is joint.

src List of source link numbers,
currently restricted to one.

dest List of destination link
numbers.

across
down

Position of center of symbol
measured in twips.

<cshape> Shape of joint.

9.22 Report attributes

This group is not completed...

<repattr> ‘{‘ \type ‘report’ ‘}’ &
 ‘{‘ \title <string> ‘}’ &
 \acrossN & \downN & \widthN

& \heightN
 (<tableattr> | <graphattr> |

<barattr> | <numberattr> |
<pictureattr> | <lineattr>)

10. References
Microsoft Corporation 1994. Rich Text Format (RTF)

Specification

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /NOR <FEFF005B0042006100730065007200740020007000E500200022005B005400720079006B006B00760061006C0069007400650074005D0022005D0020004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200065007200200062006500730074002000650067006E0065007400200066006F00720020006600F80072007400720079006B006B0073007500740073006B00720069006600740020006100760020006800F800790020006B00760061006C0069007400650074002E0020005000440046002D0064006F006B0075006D0065006E00740065006E00650020006B0061006E002000E50070006E00650073002000690020004100630072006F00620061007400200065006C006C00650072002000410064006F00620065002000520065006100640065007200200035002E003000200065006C006C00650072002000730065006E006500720065002E>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars true
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

